[1]
Y.L. Cai, Y.R. Zheng (Eds.), Metallographic research on superalloy, National defense industry press, Beijing, 1986, pp.228-238.
Google Scholar
[2]
W.X. Zhao, Y. Li, Y.W. Fan, et al., Fracture analysis for second stage rotor turbine blade aero-engine, J. Journal of meterials engineering. 8 (2012) 39-44.
Google Scholar
[3]
S.Y. Li, Y.R. Zheng, Overtemperature failure analysis of turbine blade in aero-engine, J. Materials for mechanical engineering. 6(7) (1983) 47-49.
Google Scholar
[4]
Metallographic technical experience exchange information anthology edit and review panel (Ed.), Failure analysis, National defense industry press, Beijing, 1997, pp.137-139.
Google Scholar
[5]
Z. Zheng, X.R. Yin, L.Y. Liu, et al., Crack analysis of first stage turbine blade in aero-engine, J. Failure analysis and prevention. 10(1) (2015) 15-20.
Google Scholar
[6]
W.H. Lu, L.Y. Liu, M.Y. Bai. Fracture analysis of gas-turbine blades of aircraft engine, J. Failure analysis and prevention. 5(4) (2010) 252-256.
Google Scholar
[7]
X. He, X.S. Hu, B.T. Zhong, Collectedpapers of the 5th national aerospace equipment failure analysis conference-CSAA, C. National defense industry press. 2006, pp.182-187.
Google Scholar
[8]
Rolls-Royce Company, Dart and spey engine turbine blade overheat checking March (1972).
Google Scholar
[9]
C.T. Sims, N.S. Stoloff, W.C. Hagel (Eds.), Superalloy Ⅱ, Wiley Inter science, New York, (1987).
Google Scholar
[10]
M.J. Donachie, S.J. Donachie, Superalloys A Technical Guide, second edition, ASM International, OH44073.
Google Scholar
[11]
Y.D. Chen, Y.R. Zheng, Q. Feng. Evaluationg Service Temperature Field of High Pressure Turbine Blades Made of Directionally Solidified DZ125 Superalloy Based on Micro-structure evolution, J. Acta Metallurgica Sinica. 52(12) (2016) 1545-1556.
DOI: 10.3724/sp.j.1037.2010.00185
Google Scholar
[12]
J.P. Rowe, J.W. Freeman, Effect of overheating on creep-rupture properties of HS-31 alloy at 1500°F, NACA TN4083, December (1957).
Google Scholar
[13]
H.Huff, H.Pillhöfer, Quantitative microstructure analysis to determine overheating temperatures in IN100 turbine blades, C, in: superalloys 1988, ed. By S.Reichiman et al, TMS, warrendale, Pennsylvania, 1988, pp.835-843.
DOI: 10.7449/1988/superalloys_1988_835_843
Google Scholar
[14]
Chinese metal society's superalloy chapter (Ed.), China superalloys handbook, volume 2, China zhijian publishing house &Standards press of China, Beijing, 2012, p.232.
Google Scholar
[15]
J.Jackson et al., Effect of volume percent of fine gamma pime on creep in DS-Mar M200, Metar.Trans. 8A(10) (1977) 1615-1620.
DOI: 10.1007/bf02644867
Google Scholar
[16]
B.P. Wu, L.H. Li, J.T. Wu, et al., Microstructure and stress rupture properties of polycrystal and directionally solidified castings of nickel-based superalloys, J. International Journal of Minerals, Metallurgy and Materials. 21(1) (2014) 58-64.
DOI: 10.1007/s12613-014-0865-1
Google Scholar
[17]
J.X. Yang, Q. Zheng, X.F. Sun, et al., Morphological evolution of γ´ phase in K465 superalloy during thermal fatigue, J. Transactions of nonferrous metals society of China. 16(z3) (2006) s1986-s1989.
Google Scholar