[1]
D. Lakehal, G.S. Theodoridis, W. Rodi. Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model[J]. International Journal of Heat and Fluid Flow, 2001, 22(2): 113-122.
DOI: 10.1016/s0142-727x(00)00084-9
Google Scholar
[2]
Y.J. Kim, S.M. Kim. Influence of shaped injection holes on turbine blade leading edge film cooling[J].International Journal of Heat and Mass Transfer, 2004, 47(2): 245-256.
DOI: 10.1016/j.ijheatmasstransfer.2003.07.008
Google Scholar
[3]
C.Y. Hu, Y.M. Xu, X.L. Liu, et a1. Stress rupture behavior of modeling specimen with cooling holes of single crystal superalloy DD6[J]. Failure Analysis and Prevention, 2007, 12(1): 38-42.
Google Scholar
[4]
R.A. Kupkovits, R.W. Neu. Thermo-mechanical fatigue of a directionally-solidified Ni-based superalloy: smooth and cylindrically-notched specimens[J]. International Journal of Fatigue, 2010, 32(8): 1330-1342.
DOI: 10.1016/j.ijfatigue.2010.02.002
Google Scholar
[5]
S.G. Dai, L. Yin, H. Qing. Creep life study on the modeling specimen of DD6 single crystal cooling turbine blade[J]. Gas Turbine Experiment and Research, 2011 (4): 36-40.
Google Scholar
[6]
H. Qing, H.F. Jiang, W.D. Wen. Study on the creep behavior of model specimens of nickel-based single crystal air-cooled blades[J]. Journal of Aerospace Power, 2007, 22(5): 773-777.
Google Scholar
[7]
Q.M. Yu, Y.L. Wang, Z.X. Wen, et al. Notch effect and its mechanism during creep rupture of nickel-base singlecrystal superalloys[J]. Materials Science and Engineering A, 2009, 520: 1-10.
DOI: 10.1016/j.msea.2009.04.060
Google Scholar
[8]
P. Lukas, P. Preclik, J. Cadek. Notch effects on creep behaviour of CMSX-4 superalloysingle crystals[J]. Materials Science and Engineering A, 2001, 298: 84-89.
DOI: 10.1016/s0921-5093(00)01288-0
Google Scholar
[9]
K. Koji. Effect of plastic anisotropy on the creep strength of single crystals of a nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 421-430.
DOI: 10.1007/s11661-000-0279-8
Google Scholar
[10]
D.Q. Shi, J. Huang, X.G. Yang, et al. Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy[J]. International Journal of Fatigue(S0142-1123), 2013, 49: 31-39.
DOI: 10.1016/j.ijfatigue.2012.12.005
Google Scholar
[11]
X.P. Lu, Z.X. Wen, Z.F. Yue. Low cycle fatigue fracture mechanism of a modeling specimen with cooling film hole of DD6 single crystal superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1173-1176.
Google Scholar
[12]
M.H. Li, X.F. Sun, J.G. Li, et al. Oxidation behavior of a single-crystal Ni-base superalloy in air. I:at 800 and 900℃[J]. Oxidation of Metals, 2003, 59(5/6): 591-605.
Google Scholar
[13]
A. Akhtar, M.S. Hook, R.C. Reed. On the oxidation of the third-generation single crystal superalloy CMSX-10[J]. Metallurgical and Materials Transactions A, 2005, 36: 3001-3017.
DOI: 10.1007/s11661-005-0073-8
Google Scholar
[14]
C.M. Younes, G.C. Allen, J.A. Nicholson. High temperature oxidation behaviour of single crystal superalloys RR3000 and CMSX-4[J]. Corrosion Engineering Science and Technology, 2007, 42(1): 80-88.
DOI: 10.1179/174327807x159925
Google Scholar
[15]
M. Doner, J.A. Hechler. Effects of section thickness and orientation on creep rupture properties of two advanced single crystal alloys[C]//Society of Automotive Engineers Inc. SAE Technical Paper 851785, Warrendale: (1985).
DOI: 10.4271/851785
Google Scholar
[16]
P. Kofstad. Defects and transport properties of metal oxides[J]. Oxidation of Metals, 1995, 44(1/2): 3-27.
Google Scholar
[17]
Y.R. Zheng. Size effects of thin section for single crystal turbine blade superalloys[J]. Journal of materials engineering, 2007, 7: 74-77.
Google Scholar
[18]
Z.H. Zhang, J.J. Yu, F. Shi, et al. Influence of thin wall on the tensile properties of DD499 single crystal superalloy[J]. Foundry, 2014, 63(8): 781-787.
Google Scholar
[19]
C.K. Yu, J.J. Yu, F.J. Zhang, et al. Influence of thin wall on the stress rupture properties of DD49 single crystal superalloy[J]. Foundry, 2014, 63(5): 479-483.
Google Scholar