[1]
Brahma U, Kothari R, Sharma P, et al. Antimicrobial and anti-biofilm activity of hexadentated macrocyclic complex of copper (II) derived from thiosemicarbazide against Staphylococcus aureus, J. Scientific reports. 2018, 8(1): 8050.
DOI: 10.1038/s41598-018-26483-5
Google Scholar
[2]
Yousuf B, Ahire J J, Dicks L M T. Understanding the antimicrobial activity behind thin-and thick-rolled copper plates, J. Applied microbiology and biotechnology. 2016, 100(12): 5569-5580.
DOI: 10.1007/s00253-016-7361-7
Google Scholar
[3]
Stewart P S, Costerton J W. Antibiotic resistance of bacteria in biofilms, J. The lancet. 2001, 358(9276): 135-138.
DOI: 10.1016/s0140-6736(01)05321-1
Google Scholar
[4]
Watanabe T. Infective heredity of multiple drug resistance in bacteria, J. Bacteriological reviews. 1963, 27(1): 87.
DOI: 10.1128/br.27.1.87-115.1963
Google Scholar
[5]
Ye H P, Xie H X. Antimicrobial mechanisms of bacteria and rational application of antibiotics,J. Modern Medicine & Health. 2015 (12): 1818-1820.
Google Scholar
[6]
Yang L, Dai B Y, Luo Y T. Detection and analysis on plasmid-mediated quinolone multi-drug resistant genes, J. International Medicine and Health Guidance News.2013,19(18):2820-2823.
Google Scholar
[7]
Ryu H S, Bae I H, Lee K G, et al. Antibacterial effect of silver-platinum coating for orthodontic appliances, J. The Angle Orthodontist. 2011, 82(1): 151-157.
DOI: 10.2319/021411-111.1
Google Scholar
[8]
Borkow G, Gabbay J. Copper as a biocidal tool, J. Current medicinal chemistry. 2005, 12(18): 2163-2175.
DOI: 10.2174/0929867054637617
Google Scholar
[9]
Vaidya M Y, McBain A J, Butler J A, et al. Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes, J. Scientific reports. 2017, 7(1): 5911.
DOI: 10.1038/s41598-017-05976-9
Google Scholar
[10]
Michels H T, Wilks S A, Noyce J O, et al. Copper alloys for human infectious disease control, J. Stainless steel. 2005, 77000(55.0): 27.0.
Google Scholar
[11]
Yang Y, Zou Z Z, Tian W J. Bactericidal properties of different copper alloys, J. Microbiology China. 2012, 39(5): 654-660.
Google Scholar
[12]
Faúndez G, Troncoso M, Navarrete P, et al. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni, J. BMC microbiology. 2004, 4(1): 19.
Google Scholar
[13]
Michels H T, Wilks S A, Noyce J O, et al. Copper alloys for human infectious disease control, J. Stainless steel. 2005, 77000(55.0): 27.0.
Google Scholar
[14]
Wilks S A, Michels H T, Keevil C W. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination, J. International journal of food microbiology. 2006, 111(2): 93-98.
DOI: 10.1016/j.ijfoodmicro.2006.04.037
Google Scholar
[15]
Noyce J O, Michels H, Keevil C W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Journal of Hospital Infection. 2006, 63(3): 289-297.
DOI: 10.1016/j.jhin.2005.12.008
Google Scholar
[16]
Hans M, Erbe A, Mathews S, et al. Role of copper oxides in contact killing of bacteria, J. Langmuir. 2013, 29(52): 16160-16166.
DOI: 10.1021/la404091z
Google Scholar
[17]
O'gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? J. Journal of Hospital Infection. 2012, 81(4): 217-223.
DOI: 10.1016/j.jhin.2012.05.009
Google Scholar
[18]
Warnes S L, Caves V, Keevil C W. Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram‐positive bacteria, J. Environmental microbiology. 2012, 14(7): 1730-1743.
DOI: 10.1111/j.1462-2920.2011.02677.x
Google Scholar
[19]
Warnes S L, Keevil C W. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet" or "dry, contact, J. Applied and environmental microbiology. 2011: AEM. 00597-11.
DOI: 10.1128/aem.00597-11
Google Scholar
[20]
Warnes S L, Green S M, Michels H T, et al. Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs, J. Applied and environmental microbiology. 2010, 76(16): 5390-5401.
DOI: 10.1128/aem.03050-09
Google Scholar
[21]
Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, J. Proceedings of the National Academy of Sciences. 2009, 106(20): 8344-8349.
DOI: 10.1073/pnas.0812808106
Google Scholar
[22]
Hong I T, Koo C H. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, J. Materials Science and Engineering: A. 2005, 393(1-2): 213-222.
DOI: 10.1016/j.msea.2004.10.032
Google Scholar
[23]
L. Nan, W. C. Yang, Y. Q. Liu, et al. Antibacterial Mechanism Of Copper-bearing Antibacterial Stainless Steel Against E.coli, J. Journal Of Materials Science & Technology. 2008, 24(2): 197-201.
Google Scholar
[24]
Hong I T, Koo C H. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, J. Materials Science and Engineering: A. 2005, 393(1-2): 213-222.
DOI: 10.1016/j.msea.2004.10.032
Google Scholar