Corrosion Behavior and Oxide Films of New Zirconium Cladding Corroded at Different Conditions

Article Preview

Abstract:

Zirconium alloys are mostly served as the cladding materials in water reactors. Corrosion is one of the concerning problems in zirconium utilization. Transition of corrosion occurs every 2~3 μm in thickness, but its mechanism is not confirmed. To study the influence of water chemistry and the mechanism behind transition, a new type of zirconium cladding was tested for three corrosion conditions: the pure water, LiOH solution, LiOH/H3BO3 solution at 360°C/18.6MPa. For all cases, Zr-0.5Sn-0.15Nb-0.5Fe-0.2V cladding had a lower corrosion rate and a longer transition time than N36 cladding. The corrosion results showed that the corrosion rate was the highest and the transition time was the shortest in LiOH solution. Oxide phase information on the oxidized surface was obtained by Raman study. Tetragonal zirconia, embedded in the surface, was found at the beginning of corrosion. As the corrosion time increased, tetragonal phase stress was almost released and the content of tetragonal phase was also decreased to zero at the transition point. Stable tetragonal phase was found on the samples corroded in pure water. However, in LiOH solution, it was eliminated the quickest. The acceleration of transition in LiOH solution is partly resulted from the fast transformation of tetragonal phase. The reason for the longer transition time in N2 cladding can be directly attributed to the smaller decrease of the tetragonal phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

480-487

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.R. Allen, R.J.M. Konings, A.T. Motta, Corrosion of zirconium alloys, Compr. Nucl. Mater. 24 (2012) 49-68.

Google Scholar

[2] A. Nechaev, Corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC, IAEA (1993).

Google Scholar

[3] Y. H. Jeong, J. H. Baek, S. J. Kim, H. G. Kim, H. Ruhmann, Corrosion characteristics and oxide microstructures of zircaloy-4 in aqueous alkali hydroxide solutions. J. Nucl. Mater. 270 (1999) 322-333.

DOI: 10.1016/s0022-3115(99)00008-2

Google Scholar

[4] H. Schubert, F. Frey, Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations, J. Eur. Ceram. Soc. 25 (2005) 1597-1602.

DOI: 10.1016/j.jeurceramsoc.2004.03.025

Google Scholar

[5] B. Cox, Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys, J. Nucl. Mater. 336 (2005) 331-368.

DOI: 10.1016/j.jnucmat.2004.09.029

Google Scholar

[6] B. Cox, M. Ungurelu, Y.M. Wong, C. Wu, in: E.R. Bradley, G.P. Sabol (Eds.), Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP, 1295, American Society for Testing and Materials, Philadelphia, 1996, p.114.

DOI: 10.1520/stp16170s

Google Scholar

[7] A. T. Motta, A. Couet, R. J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res. 45 (2015) 311-343.

DOI: 10.1146/annurev-matsci-070214-020951

Google Scholar

[8] M. Preuss, P. Frankel, S. Lozano-Perez, D. Hudson, E. Polatidis, N. Ni, et al, Studies regarding corrosion mechanisms in zirconium alloys, J. ASTM Int. 8 (2011) 1-23.

DOI: 10.1520/jai103246

Google Scholar

[9] E. Polatidis, P. Frankel, J. Wei, M. Klaus, R. J. Comstock, A. Ambard, et al, Residual stresses and tetragonal phase fraction characterization of corrosion tested zircaloy-4 using energy dispersive synchrotron x-ray diffraction, J. Nucl. Mater. 432 (2013) 102-112.

DOI: 10.1016/j.jnucmat.2012.07.025

Google Scholar

[10] I. Idarraga, C. Duriez, M. Mermoux, A. Crisci, J. P. Mardon, Potentialities of Raman imaging for the analysis of oxide scales formed on Zircaloy-4 and M5 in air at high temperature, Oxid. Met. 79 (2013) 289-302.

DOI: 10.1007/s11085-012-9331-5

Google Scholar

[11] P. Platt, S. Wedge, P. Frankel, M. Gass, R. Howells, M. Preuss, A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys, J. Nucl. Mater. 459 (2015) 166-174.

DOI: 10.1016/j.jnucmat.2015.01.028

Google Scholar

[12] L. Kurpaska, J. Favergeon, et al. Zirconia layer formed by high temperature oxidation of pure zirconium: stress generated at the zirconium/zirconia interface, Oxid. Met. 79 (2013) 261-277.

DOI: 10.1007/s11085-012-9348-9

Google Scholar

[13] L. Kurpaska, I. Jozwik, J. Jagielski, Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and zr-1.0% nb alloy by using sem/fib/ebsd and eds techniques, J. Nucl. Mater. 476 (2016) 56-62.

DOI: 10.1016/j.jnucmat.2016.04.038

Google Scholar

[14] W. Qin, C. Nam, H. L. Li, J. A. Szpunar, Tetragonal phase stability in zro film formed on zirconium alloys and its effects on corrosion resistance, Acta Mater. 55 (2007) 1695-1701.

DOI: 10.1016/j.actamat.2006.10.030

Google Scholar

[15] G. Xin, Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater. 16 (2004) 3988-3994.

DOI: 10.1021/cm040167h

Google Scholar

[16] J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R. J. Comstock, et al, Acta Mater. 61 (2013) 4200-4214.

Google Scholar

[17] G. Sundell, M. Thuvander, H. O. Andrén, Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys, Corros. Sci. 102 (2016) 490-502.

DOI: 10.1016/j.corsci.2015.11.002

Google Scholar

[18] H. Hulme, F. Baxter, R. P. Babu, M. A. Denecke, M. Gass, A. Steuwer, et al, Corros. Sci. 105 (2016) 202-208.

Google Scholar

[19] J. H. Baek, Y. H. Jeong, I. S. Kim, J. Nucl. Mater. 280 (2000) 235-245.

Google Scholar

[20] H. G. Kim, J. Y. Park, Y. H. Jeong, Ex-reactor corrosion and oxide characteristics of Zr–Nb–Fe alloys with the Nb/Fe ratio, J. Nucl. Mater. 345 (2005) 1-10.

DOI: 10.1016/j.jnucmat.2005.04.061

Google Scholar