Preparation of Hybrid Composite Materials on the Basis of Vanadium and Molybdenum Oxide Compounds

Article Preview

Abstract:

Hybrid composite oxide material is obtained by transient electrolysis method on the surface of carbon fiber substrate having the ability to reverse electrochemical intercalation of lithium. It is established that electrochemical characteristics of the hybrid composite oxide material depend on the concentration of sodium metavanadate in the solution of cathodic degreasing electrolyte during the preparation of carbon substrate surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-452

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Legagneur, J.-H. Liao, Y. An, A. et al., Li2Mn(VO3)4 ·2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties, Solid State Ionics. 133 (2000) 161– 70.

DOI: 10.1016/s0167-2738(00)00736-0

Google Scholar

[2] C. Yuan, C. Li, B. Ma, X. Li, X. Cao, A facile method for low – temperature synthesis of NaV3O8 as cathode materials for lithium secondary batteries, Materials Science. 17 (2011) 65-68.

DOI: 10.5755/j01.ms.17.1.252

Google Scholar

[3] J. Wang, X. Yao, X. Zhou, Z. Liu, Synthesis and electrochemical properties of layered lithium transition metal oxides, J. Mater. Chem. 21 (2011) 2544-2549.

DOI: 10.1039/c0jm03388j

Google Scholar

[4] N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics, J. Mater. Chem. 19 (2009) 2526-2552.

DOI: 10.1039/b819629j

Google Scholar

[5] Y. Luo, J. luo, J. Jiang, W. Zhou, H. Yang et. al., Seed – assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium – ion battery applications, Energy Environ. Sci. 5 (2012) 6559–6566.

DOI: 10.1039/c2ee03396h

Google Scholar

[6] Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries, Adv. Energy Mater. 6 (2016) 1502175.

DOI: 10.1002/aenm.201502175

Google Scholar

[7] C. Yuan, H. Wu, Yi Xie, X. W. (David) Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications, Angew. Chem. Ind. Ed. 53 (2014) 1488-1504.

DOI: 10.1002/anie.201303971

Google Scholar

[8] P. He, H. Yu, De Lia, H. Zhou, Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries, J. Mater. Chem. 22 (2012) 3680-3695.

DOI: 10.1039/c2jm14305d

Google Scholar

[9] S.Y. Lin, C.M. Wang, K.S. Kao et al., Electrochromic properties of MoO3 thin films derived by a sol–gel process,  J Sol-Gel Sci Technol. 53 (2010) 51-58.

DOI: 10.1007/s10971-009-2055-6

Google Scholar

[10] K. Eda, Y. Uno, N. Nagai, N. Sotani, M.S. Whittingham, Crystal structure of cobalt molybdate hydrate CoMoO4·nH2O, Jounal of Solid State Chemistry. 178 (2005) 2791–2797.

DOI: 10.1016/j.jssc.2005.06.014

Google Scholar

[11] R.D. Apostolova, E.M. Shembel, V.M. Nagirnyi, Synthesis and investigations of electrolytic sodium - vanadium oxide compounds for cathodes of lithium batteries: the production of compounds with stable initial characteristics, Russian Journal of Electrochemistry. 36 (2000) 36–42.

DOI: 10.1007/bf02757793

Google Scholar

[12] X. Xia, J. Tu, Y. Zhang, X. Wang, Ch. Gu, Xin-bing Zhao, Hong Jin Fan, High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage, ACS Nano. 6 (2012) 5531–5538.

DOI: 10.1021/nn301454q

Google Scholar

[13] V. Legagneur, J.-H. Liao, Y. An, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard, Li2Mn(VO3)4∙2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties, Solid State Ionics. 133 (2000) 161–170.

DOI: 10.1016/s0167-2738(00)00736-0

Google Scholar

[14] N.P. Klochko, N.D. Volkova, V.V. Starikov et al., Utilization of alternating current methods for manufacture of selective absorbing coatings for heat collectors, Functional Materials. 12 (2005) 123–125.

Google Scholar

[15] J. Zhang, H. Ge, Z. Li, Z. Ding, Internal heating of lithium – ion batteries using alternating current based on the heat generation model in frequency domain, Journal of Power Sources. 273 (2015) 1030–1037.

DOI: 10.1016/j.jpowsour.2014.09.181

Google Scholar

[16] T. Abdulla, A Yerokhin., R. Goodall, Effect of plasma electrolytic oxidation coating of the specific strength, Materials and design. 32 (2011) 3742–3749.

DOI: 10.1016/j.matdes.2011.03.053

Google Scholar

[17] T. Yoshioka, A. Chavez – Valdez, J.A. Rocther et al., AC electrophoretic deposition of organic – inorganic composite coatings, Journal of colloid and interface science. 392 (2013) 167–171.

DOI: 10.1016/j.jcis.2012.09.087

Google Scholar

[18] R.D. Apostolova, E.M. Shembel, V.M. Nagirnyi, Synthesis and investigations of electrolytic sodium - vanadium oxide compounds for cathodes of lithium batteries: the production of compounds with stable initial characteristics, Russian Journal of Electrochemistry. 36 (2000) 36–42.

DOI: 10.1007/bf02757793

Google Scholar

[19] Zh.I. Bespalova, A.V. Khramenkova. The use of transient electrolysis in the technology of oxide composite nanostructured materials: review, Nanosystems: Physics, Chemistry, Mathematics. 3 (2016) 433–450.

DOI: 10.17586/2220-8054-2016-7-3-433-450

Google Scholar

[20] H. B. Wu, J. S. Chen, H. H. Hng, X. W. (David) Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries, Nanoscale. 4 (2012) 2526–2542.

DOI: 10.1039/c2nr11966h

Google Scholar