Preparation of Hybrid Composite Materials on the Basis of Vanadium and Molybdenum Oxide Compounds

Abstract:

Article Preview

Hybrid composite oxide material is obtained by transient electrolysis method on the surface of carbon fiber substrate having the ability to reverse electrochemical intercalation of lithium. It is established that electrochemical characteristics of the hybrid composite oxide material depend on the concentration of sodium metavanadate in the solution of cathodic degreasing electrolyte during the preparation of carbon substrate surface.

Info:

Periodical:

Edited by:

Dr. Denis Solovev

Pages:

448-452

Citation:

A.V. Khramenkova et al., "Preparation of Hybrid Composite Materials on the Basis of Vanadium and Molybdenum Oxide Compounds", Materials Science Forum, Vol. 945, pp. 448-452, 2019

Online since:

February 2019

Export:

Price:

$41.00

[1] V. Legagneur, J.-H. Liao, Y. An, A. et al., Li2Mn(VO3)4 ·2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties, Solid State Ionics. 133 (2000) 161– 70.

DOI: https://doi.org/10.1016/s0167-2738(00)00736-0

[2] C. Yuan, C. Li, B. Ma, X. Li, X. Cao, A facile method for low – temperature synthesis of NaV3O8 as cathode materials for lithium secondary batteries, Materials Science. 17 (2011) 65-68.

DOI: https://doi.org/10.5755/j01.ms.17.1.252

[3] J. Wang, X. Yao, X. Zhou, Z. Liu, Synthesis and electrochemical properties of layered lithium transition metal oxides, J. Mater. Chem. 21 (2011) 2544-2549.

DOI: https://doi.org/10.1039/c0jm03388j

[4] N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics, J. Mater. Chem. 19 (2009) 2526-2552.

DOI: https://doi.org/10.1039/b819629j

[5] Y. Luo, J. luo, J. Jiang, W. Zhou, H. Yang et. al., Seed – assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium – ion battery applications, Energy Environ. Sci. 5 (2012) 6559–6566.

DOI: https://doi.org/10.1039/c2ee03396h

[6] Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries, Adv. Energy Mater. 6 (2016) 1502175.

DOI: https://doi.org/10.1002/aenm.201502175

[7] C. Yuan, H. Wu, Yi Xie, X. W. (David) Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications, Angew. Chem. Ind. Ed. 53 (2014) 1488-1504.

DOI: https://doi.org/10.1002/anie.201303971

[8] P. He, H. Yu, De Lia, H. Zhou, Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries, J. Mater. Chem. 22 (2012) 3680-3695.

DOI: https://doi.org/10.1039/c2jm14305d

[9] S.Y. Lin, C.M. Wang, K.S. Kao et al., Electrochromic properties of MoO3 thin films derived by a sol–gel process,  J Sol-Gel Sci Technol. 53 (2010) 51-58.

DOI: https://doi.org/10.1007/s10971-009-2055-6

[10] K. Eda, Y. Uno, N. Nagai, N. Sotani, M.S. Whittingham, Crystal structure of cobalt molybdate hydrate CoMoO4·nH2O, Jounal of Solid State Chemistry. 178 (2005) 2791–2797.

DOI: https://doi.org/10.1016/j.jssc.2005.06.014

[11] R.D. Apostolova, E.M. Shembel, V.M. Nagirnyi, Synthesis and investigations of electrolytic sodium - vanadium oxide compounds for cathodes of lithium batteries: the production of compounds with stable initial characteristics, Russian Journal of Electrochemistry. 36 (2000) 36–42.

DOI: https://doi.org/10.1007/bf02757793

[12] X. Xia, J. Tu, Y. Zhang, X. Wang, Ch. Gu, Xin-bing Zhao, Hong Jin Fan, High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage, ACS Nano. 6 (2012) 5531–5538.

DOI: https://doi.org/10.1021/nn301454q

[13] V. Legagneur, J.-H. Liao, Y. An, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard, Li2Mn(VO3)4∙2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties, Solid State Ionics. 133 (2000) 161–170.

DOI: https://doi.org/10.1016/s0167-2738(00)00736-0

[14] N.P. Klochko, N.D. Volkova, V.V. Starikov et al., Utilization of alternating current methods for manufacture of selective absorbing coatings for heat collectors, Functional Materials. 12 (2005) 123–125.

[15] J. Zhang, H. Ge, Z. Li, Z. Ding, Internal heating of lithium – ion batteries using alternating current based on the heat generation model in frequency domain, Journal of Power Sources. 273 (2015) 1030–1037.

DOI: https://doi.org/10.1016/j.jpowsour.2014.09.181

[16] T. Abdulla, A Yerokhin., R. Goodall, Effect of plasma electrolytic oxidation coating of the specific strength, Materials and design. 32 (2011) 3742–3749.

DOI: https://doi.org/10.1016/j.matdes.2011.03.053

[17] T. Yoshioka, A. Chavez – Valdez, J.A. Rocther et al., AC electrophoretic deposition of organic – inorganic composite coatings, Journal of colloid and interface science. 392 (2013) 167–171.

DOI: https://doi.org/10.1016/j.jcis.2012.09.087

[18] R.D. Apostolova, E.M. Shembel, V.M. Nagirnyi, Synthesis and investigations of electrolytic sodium - vanadium oxide compounds for cathodes of lithium batteries: the production of compounds with stable initial characteristics, Russian Journal of Electrochemistry. 36 (2000) 36–42.

DOI: https://doi.org/10.1007/bf02757793

[19] Zh.I. Bespalova, A.V. Khramenkova. The use of transient electrolysis in the technology of oxide composite nanostructured materials: review, Nanosystems: Physics, Chemistry, Mathematics. 3 (2016) 433–450.

DOI: https://doi.org/10.17586/2220-8054-2016-7-3-433-450

[20] H. B. Wu, J. S. Chen, H. H. Hng, X. W. (David) Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries, Nanoscale. 4 (2012) 2526–2542.

DOI: https://doi.org/10.1039/c2nr11966h