The Usage of Hydroextrusion for Plastic Deformation of Magnetostrictive Iron-Gallium Alloys

Article Preview

Abstract:

For the first time hydroextrusion process was chosen for Fe-Ga ingots deformation with a gallium content of 19 and 20 at.%. The samples were annealed at 950oC, followed by air cooling. Structure of deformation and primary recrystallyzation were investigated by the method of electron back-scattered diffraction (EBSD). The degree of hydroextrusion deformation achieved was 28 – 42 %. There was not found any crystallographic texture at such degree of deformation. The value of magnetostriction in recrystallization sample was about 100 ppm. Available in literature methods and approaches to creation of the Fe-Ga samples from the point of view of receiving high magnetostriction and also a possibility of machining of the samples are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A. Lograsso, D.L Schlagel, Magnetostrictive properties of body- centered cubic Fe-Ga and Fe-Ga-Al alloys, IEEE Transactions on Magnetics. 36 (2000) 3238- 3240.

DOI: 10.1109/20.908752

Google Scholar

[2] A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, J.R. Gullen, Effect of quenching on the magnetostriction of Fe1-xGax (0.13<x<0.21), IEEE Transaction on magnetics. 37 (2001) 2678-2680.

DOI: 10.1109/20.951272

Google Scholar

[3] A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, M. Keppens, G. Petculescu, R.A. Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys, J. Appl. Phys. 93 (2003) 8621-8623.

DOI: 10.1063/1.1540130

Google Scholar

[4] J. Atulasimha, A.B. Flatau, A review of magnetostrictive iron-gallium alloys, Smart Mater. Struct. 20 (2011) 043001.

DOI: 10.1088/0964-1726/20/4/043001

Google Scholar

[5] E.M. Summers, T.A. Lograsso, J.D. Snodgrass, J.C. Slaugher, Magnetic and mechanical properties of polycrystalline galfenol, Ames Laboratory Conference Papers, Posters, and Presentations (2004) 59.

Google Scholar

[6] R.A. Kellogg. Development and modeling of iron–gallium alloys. PhD Thesis Engineering Mechanics, Iowa StateUniversity, Ames, Iowa (2003).

Google Scholar

[7] T.V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, M.L. Free, Corrosion studies of single crystalsof iron-gallium alloys in aqueous environments, Corros. Sci. 49 (2007) 4015–4027.

DOI: 10.1016/j.corsci.2007.05.010

Google Scholar

[8] Q. Xing, Y. Du, R.J .McQueeney, T.A. Lograsso, Structural investigations of Fe-Ga alloys: Phase relations and magnetostrictive behavior, Acta Materialia. 56 (2008) 4536–4546.

DOI: 10.1016/j.actamat.2008.05.011

Google Scholar

[9] Himalay Basumatary, Mithun Palit, J. Arout Chelvane, S. Pandian, M. Manivel Raja, V. Chandrasekaran, Structural ordening and magnetic properties of Fe100-xGax alloys, Scripta Materialia. 59 (2008) 878-881.

DOI: 10.1016/j.scriptamat.2008.06.034

Google Scholar

[10] Q. Xing, T.A. Lograsso, Effect of cooling rate on magnetoelasticity and short-range order in Fe-Ga alloys, Scripta Materialia. 65 (2011) 359-362.

DOI: 10.1016/j.scriptamat.2011.05.010

Google Scholar

[11] C. Mudivarthi, M. Laver, J. Cullen, A.B. Flatau, V. Wuttig, Origin of magnetostriction in Fe-Ga, Journal of Applied Physics. 107 (2010) 09A957-1-09A957-3.

DOI: 10.1063/1.3359814

Google Scholar

[12] J. Zang, T. Ma, M. Yan, Anomalous phase transformation in magnetostrictive Fe81Ga19 alloy, Journal of Magnetism and Magnetic Materials. 322 (2010) 2882-2887.

DOI: 10.1016/j.jmmm.2010.04.045

Google Scholar

[13] J. Zang, T. Ma, M. Yan, Magnetic force microscopic study of heat-treated Fe81Ga19 with different cooling rates, Physica B. 405 (2010) 3129-3134.

DOI: 10.1016/j.physb.2010.04.027

Google Scholar

[14] J.H. Li, X.X. Gao, J.X. Xie, J. Zhu, X.Q. Bao, R.B. Yu, Large magnetostriction and structural characterictics of Fe83Ga17 wires, Physica B. 407 (2012) 1186-1190.

DOI: 10.1016/j.physb.2012.01.080

Google Scholar

[15] S. Na, A.B. Flatau, Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation, Scripta Materialia. 66 (2012) 307–310.

DOI: 10.1016/j.scriptamat.2011.11.020

Google Scholar

[16] Z. He, Y. Sha, F. Zhang, L. Zuo, Strong Goss texture in recrystallized Fe81Ga19 sheet, Materials Scince Forum, 702-703 (2012) 742-745.

DOI: 10.4028/www.scientific.net/msf.702-703.742

Google Scholar

[17] Z. He, D. Su, Y. Sha, F. Zhang, L. Zuo, Primary recrystallization texture in rolled (Fe81Ga19)B1 sheet, Advanced Materials Research. 535-537 (2012) 772-775.

DOI: 10.4028/www.scientific.net/amr.535-537.772

Google Scholar

[18] S. Wen, Y. Ma, D. Wang, Z. Xu, S. Awaji, K. Watanabe, Magnetostriction enhancement by high magnetic field annealing in cast Fe81Ga19 alloy, Journal of Magnetism and Magnetic Materials. 442 (2017) 128-135.

DOI: 10.1016/j.jmmm.2017.06.095

Google Scholar

[19] J.H. Li, X.X. Gao, X.M. Xiao, X.Q. Bao, M.C. Zhang. Magnitostriction of <100> oriented Fe-Ga rods with large diameter, Rare Met. 34 (2015) 472-476.

DOI: 10.1007/s12598-013-0127-9

Google Scholar

[20] B.I. Beresnev, E.V. Trushin, The process of hydroextrusion, Nauka, Moscow, (1976).

Google Scholar