[1]
J.R. Blake, B.B. Taib, and G. Doherty, Transient cavities near boundaries. Part 1. Rigid boundary, J. Fluid Mech., 170 (1986) 479–497.
DOI: 10.1017/s0022112086000988
Google Scholar
[2]
S.M. Ahmed, K. Hokkirigawa, and R. Oba, Fatigue failure of SUS 304 caused by vibratory cavitation erosion, Wear, 177 (1994) 129–137.
DOI: 10.1016/0043-1648(94)90238-0
Google Scholar
[3]
J.F. Santa, J.A. Blanco, J.E. Giraldo, and A. Toro, Cavitation erosion of martensitic and austenitic stainless steel welded coatings, Wear, 271 (2011) 1445–1453.
DOI: 10.1016/j.wear.2010.12.081
Google Scholar
[4]
J. Ozonek, Application of Hydrodynamic Cavitation in Environmental Engineering, Taylor & Francis Group, London. (2012).
Google Scholar
[5]
C.-T. Hsiao, A. Jayaprakash, A. Kapahi, J.-K. Choi, and G. L. Chahine, Modelling of material pitting from cavitation bubble collapse, J. Fluid Mech., 755 (2014) 142–175.
DOI: 10.1017/jfm.2014.394
Google Scholar
[6]
B.K. Sreedhar, S.K. Albert, and A.B. Pandit, Cavitation erosion testing of austenitic stainless steel (316L) in liquid sodium, Wear, 328–329 (2015) 436–442.
DOI: 10.1016/j.wear.2015.03.009
Google Scholar
[7]
C.T. Kwok, F.T. Cheng, and H.C. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5 % NaCl solution, Mater. Sci. Eng., A290 (2000) 145–154.
DOI: 10.1016/s0921-5093(00)00899-6
Google Scholar
[8]
W. Lauterborn and H. Bolle, Experimental invstigation of cavitation bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech., 72 (1975) 391–399.
DOI: 10.1017/s0022112075003448
Google Scholar
[9]
M.S. Plesset and R.B. Chapman, Collapse of an initially spherical Vapor Cavity in the Neighborhood of a solid Boundary, J. Fluid Mech., 47 (1971) 283–290.
DOI: 10.1017/s0022112071001058
Google Scholar
[10]
M. Dular, B. Bachert, B. Stoffel, and B. Širok, Relationship between cavitation structures and cavitation damage, Wear, 257 (2004) 1176–1184.
DOI: 10.1016/j.wear.2004.08.004
Google Scholar
[11]
J.K. Choi, A. Jayaprakash, and G.L. Chahine, Scaling of cavitation erosion progression with cavitation intensity and cavitation source, Wear, 278–279 (2012) 53–61.
DOI: 10.1016/j.wear.2012.01.008
Google Scholar
[12]
ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, G 32 - 10, (2011) 1–19.
Google Scholar
[13]
S. Hattori and N. Mikami, Cavitation erosion resistance of stellite alloy weld overlays, Wear, 267 (2009) 1954–(1960).
DOI: 10.1016/j.wear.2009.05.007
Google Scholar
[14]
L.A. Espitia and A. Toro, Cavitation resistance, microstructure and surface topography of materials used for hydraulic components, Tribol, 43(11) (2010) 2037–(2045).
DOI: 10.1016/j.triboint.2010.05.009
Google Scholar
[15]
M. Szala, T. Hejwowski, and I. Iwona, Cavitation Erosion Resistance Of Ni-Co Based Coatings, Adv. Sci. Technol., 8 (2014) 36–42.
Google Scholar
[16]
C.T. Kwok, H.C. Man, and F.T. Cheng, Cavitation erosion of duplex and super duplex stainless steels, Scr. Mater., 39 (1998) 1229–1236.
DOI: 10.1016/s1359-6462(98)00308-x
Google Scholar
[17]
C.H. Zhang, N. Yan, Y.X. Hao, C. Wang, X. Bian, and S. Zhang, Study on Cavitation Erosion Behavior of Monel Alloys in the Simulated Seawater Solution, Adv. Mater. Res., 631–632 (2013) 40–43.
DOI: 10.4028/www.scientific.net/amr.631-632.40
Google Scholar
[18]
A. Neville and B. A.B. Mcdougall, Erosion – and cavitation – corrosion of titanium and its alloys, Wear, 250 (2001) 726–735.
DOI: 10.1016/s0043-1648(01)00709-8
Google Scholar
[19]
Y.X. Qiao, X. Cai, C. Ouyang, and Y.G. Zheng, Effect of Hydrogen on Cavitation Erosion Behaviour of High Strength Steel, Int. J. Electrochem. Sci., 11 (2016) 10329–10346.
DOI: 10.20964/2016.12.34
Google Scholar
[20]
S. Han, J.H. Lin, J.J. Kuo, J.L. He, and H.C. Shih, The cavitation-erosion phenomenon of chromium nitride coatings deposited using cathodic arc plasma deposition on steel, Surf. Coatings Technol., 161 (2002) 20–25.
DOI: 10.1016/s0257-8972(02)00392-4
Google Scholar
[21]
S.A. Karrab, M.A. Doheim, M.S. Aboraia, and S.M. Ahmed, Examination of Cavitation Erosion Particles Morphology in Corrosive Waters, J. Eng. Sci. Assiut Univ., 40 (2012) 1793–1814.
DOI: 10.21608/jesaun.2012.114620
Google Scholar
[22]
G. Bregliozzi, A. Di Schino, S.I.U. Ahmed, J.M. Kenny, and H. Haefke, Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear, 258 (2005) 503–510.
DOI: 10.1016/j.wear.2004.03.024
Google Scholar
[23]
B. Vyas and I.L.H. Hansson, The Cavitation Erosion - Corrosion Of Stainless Steel, 30 (1990) 761–770.
DOI: 10.1016/0010-938x(90)90001-l
Google Scholar
[24]
Y. Zheng, S. Luo, and W. Ke,Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions, Wear, 262 (2007) 1308–1314.
DOI: 10.1016/j.wear.2007.01.006
Google Scholar
[25]
J. Basumatary, M. Nie, and R.J.K. Wood, The Synergistic Effects of Cavitation Erosion–Corrosion in Ship Propeller Materials, J. Bio- Tribo-Corrosion, (2015) 1–12.
DOI: 10.1007/s40735-015-0012-1
Google Scholar