SiAlON-TiN Ceramic Composites by Electric Current Assisted Sintering

Article Preview

Abstract:

Electric current assisted sintering of β-Si5AlON7-TiN ceramic composites from raw materials prepared by combustion synthesis was investigated. A high level of relative density (92% and higher) was achieved by using of two types of electric current assisted sintering technique: high voltage electric discharge consolidation, as well as spark plasma sintering. While only spark plasma sintering, it may be considered as promising technique for obtaining ceramic composites and items with high level of strength properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-57

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ekström and M. Nygren, SiAlON ceramics, J. Am. Ceram. Soc. 75 (1992) 259-276.

Google Scholar

[2] N.C. Acikbas, S. Tegmen, S. Ozcan, and G. Acikbas, Thermal shock behavior of α:β-SiAlON–TiN composites, Ceram. Int. 40 (2014) 3611-3618.

DOI: 10.1016/j.ceramint.2013.09.064

Google Scholar

[3] S. Kawano, J. Takahashi and S. Shimada, Highly electroconductive TiN/Si3N4 composite ceramics fabricated by spark plasma sintering of Si3N4 particles with a nano-sized TiN coating, J. Mater. Chem. 12 (2002) 361-365.

DOI: 10.1039/b107058b

Google Scholar

[4] Y.K. Lok and T.C. Lee, Processing of advanced ceramics using the wire cut EDM process, J. Mater. Process Technol. 63 (1997) 839-843.

DOI: 10.1016/s0924-0136(96)02735-5

Google Scholar

[5] M. Tokita, Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering, Nanotech. in Russia. 10 (2015) 261-267.

DOI: 10.1134/s1995078015020202

Google Scholar

[6] M.S. Yurlova, V.D. Demenyuk, L.Yu. Lebedeva, D.V. Dudina, E.G. Grigoryev and E.A. Olevsky, Electric pulse consolidation: an alternative to spark plasma sintering, J. Mater. Sci. 49 (2014) 952-985.

DOI: 10.1007/s10853-013-7805-8

Google Scholar

[7] V.V. Zakorzhevskii, I.D. Kovalev and Yu.N. Barinov, Self-propagating high-temperature synthesis of titanium nitride with the participation of ammonium chloride, Inorg. Mater. 53 (2017) 278-286.

DOI: 10.1134/s002016851703013x

Google Scholar

[8] V.U. Goltsev, E.G. Grigoryev, A.G. Zholnin, E.V. Nefedova, K.L. Smirnov, Strength Analysis of Small-sized Thin Ceramic Discs Obtained by Spark Plasma Sintering, IOP Conference Series: Mater. Sci. Eng. 218 (2017) 012010.

DOI: 10.1088/1757-899x/218/1/012010

Google Scholar

[9] M. Mitomo, Y. Yajima and N. Kuramoto, Thermal decomposition of Si-Al-O-N ceramics, J. Am. Ceram. Soc. 62 (1979) 316-317.

Google Scholar

[10] J.F. Yang, Y. Beppu, G.J. Zhang, T. Ohji and S. Kanzaki, Synthesis and Properties of Porous Single-Phase β-SiAlON Ceramics, J. Am. Ceram. Soc. 85 (2002) 1879-1881.

DOI: 10.1111/j.1151-2916.2002.tb00370.x

Google Scholar

[11] K.L. Smirnov, Combustion synthesis of SiAlON–BN hetero-modulus ceramic composites, Int. J. Self-Propag. High-Temp. Synth. 24 (2015) 219-225.

DOI: 10.3103/s1061386215040147

Google Scholar