Physical Methods of Melt Processing at Production of Aluminum Alloys and Composites: Opportunities and Prospects of Application

Article Preview

Abstract:

The paper describes the advantages and prospects of using the physical methods of melts processing in the production of aluminum alloys and cast aluminum matrix composites. Classification of the physical methods of the melt processing by the state of metal during the processing period and by the physical principle of the imposed effects is proposed. The influence of physical processing of melts on the structure of aluminum matrix composites depending on the type of imposed influence and the origin of the reinforcing phases is shown. The positive effect of thermo-temporal treatment on the structure of materials was confirmed on example of in-situ composites of Al-Mg2Si system, it includes reduction in the average size of endogenous reinforcing phases and changing their morphology to a more compact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

655-660

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Du, B. Wen, Appl. Mater. Today 7 (2017) 13-46.

Google Scholar

[2] M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20 (2016) 12-13.

Google Scholar

[3] R. Lumley (ed.), Fundamentals of Aluminium Metallurgy: Recent Advances, 1st ed., Woodhead Publishing, (2018).

Google Scholar

[4] V.B. Deev, E.S. Prusov, A.I. Kutsenko, Metall. Ital. 2 (2018) 16-24.

Google Scholar

[5] I.F. Selyanin, V.B. Deev, N.A. Belov, O.G. Prikhodko, Russ. J. Non-Ferr. Met., 56 (2015) 434-436.

Google Scholar

[6] V.B Deev, I.F. Selyanin, A.I. Kutsenko, N.A. Belov, K.V. Ponomareva, Metallurg. 58 (2015) 1123-1127.

Google Scholar

[7] Yu.A. Bazin, V.N. Kurbatov, B.A. Baum, Rasplavy, 1 (1999) 14-17.

Google Scholar

[8] V.B. Deev, E.S. Prusov, K.N. Vdovin, T.A. Bazlova, M.V. Temlyantsev, J. Eng. Appl. Sci. (Asian Res. Publ. Netw.) 13 (2018) 998-1001.

Google Scholar

[9] Q.L. Wang, H.R. Geng, M. Zhuo, F. Long, X. Peng, Mater. Sci. Tech., 29 (2013), 1233-1240.

Google Scholar

[10] H. Chen, J. Jie, Y. Fu, H. Ma, T. Li, Trans. Nonferrous Met. Soc. China, 24 (2014) 1295-1300.

Google Scholar

[11] Y. Zhang, X. Cheng, H. Zhong, Z. Xu, L. Li, Y. Gong, X. Miao, C. Song, Q. Zhai, Metals 6 (2016) 170.

Google Scholar

[12] I.Y. Timoshkin, K.V. Nikitin, V.I. Nikitin, V.B. Deev, Russ. J. Non-Ferr. Met., 57 (2016) 419-423.

Google Scholar

[13] V. Deev, E. Ri, E. Prusov, in: Abstracts of 27th International Conference on Metallurgy and Materials, Tanger Ltd., 2018, p.77.

Google Scholar

[14] Y. Zhang, D. Rabiger, B. Willers, S. Eckert, Int. J. Cast Metal. Res. 30 (2017) 13-19.

Google Scholar

[15] G.I. Eskin, D.G. Eskin, Ultrasonic Melt Treatment of Light Alloy Melts, 2nd ed., Boca Raton, FL, CRC Press, (2014).

DOI: 10.1201/b17270

Google Scholar

[16] G.I. Eskin, Metallurg. 54 (2010) 505-513.

Google Scholar

[17] N.A. Nordin, T.A. Abubakar, E. Hamzah, S. Farahany, A. Ourdjini, Procedia Eng. 184 (2017) 595-603.

DOI: 10.1016/j.proeng.2017.04.144

Google Scholar

[18] F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, M. Mounib, Acta Mater. 116 (2016) 354-363.

DOI: 10.1016/j.actamat.2016.06.056

Google Scholar

[19] S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Design 113 (2017) 195-206.

Google Scholar

[20] S. Vorozhtsov, O. Kudryashova, V. Promakhov, V. Dammer, A. Vorozhtsov, JOM 68 (2016) 3094-3100.

DOI: 10.1007/s11837-016-2147-z

Google Scholar

[21] E.S. Prusov, A.A. Panfilov, V.A. Kechin, Russ. J. Non-Ferr. Met., 58 (2017) 308-316.

Google Scholar

[22] G. Bai, Z. Liu, J. Lin, Z. Yu, Y. Hu, C. Wen, Mater. Design 90 (2016) 424-432.

Google Scholar