Plasmonic Resonance Sensitivity in Phase Transition of Ga Nanoparticle Arrays Grown by Glancing Angle Deposition Technique

Article Preview

Abstract:

Gallium is a liquid metal at near room temperature and in recent decades has become a key element in both electronic and optoelectronic applications. We demonstrate for the first time highly ordered spherical Ga nanoparticle (NP) arrays were fabricated by glancing angle deposition (GLAD) technique. GLAD is a simple method based on self-assembly that can produce highly ordered one-dimensional plasmonic NP chains. The real time (in-situ) monitoring of optical properties of Ga NPs plays an important role in measurement of optical behaviour in phase change. Also this provides information on the growth mechanism and allows production of structures with the desired optical characteristics. Reflectance anisotropy spectroscopy (RAS) has been used for monitoring of in-situ optical properties of the liquid-solid transition in Ga NP arrays. The results show stability and phase transition sensitivity of plasmonic resonance of Ga NP arrays. In order to confirm experimental results an analytical model was adapted by using Transfer Matrix Formalism and experimental parameters of Ga NP arrays were used for simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, ACS Nano, 9 (2), 2049-2060 (2015).

DOI: 10.1021/nn5072254

Google Scholar

[2] P. C. Wu, M. Losurdo, T. H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, Langmuir, 25 (2), 924-930 (2009).

Google Scholar

[3] P. C Wua, T. H. Kim and A. S. Brown, Appl. Phys. Lett., 90, 103119 (2007).

Google Scholar

[4] G. Schön, J. Electron Spectrosc. Relat. Phenom., 2 (1), 75–86 (1973).

Google Scholar

[5] Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, Nano Lett., 13 (6), 2837-2841(2013).

Google Scholar

[6] A. I. Denisyuk, F. Jonsson, K. F. MacDonald, N. I. Zheludev and F. J. García de Abajo, Appl. Phys. Lett., 92, 093112 (2008).

DOI: 10.1063/1.2890483

Google Scholar

[7] B. F. Soares, K. F. MacDonalda and N. I. Zheludev, Appl. Phys. Lett., 91, 043115 (2007).

Google Scholar

[8] S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, Phys. Rev. Lett., 92, 145702 (2004).

Google Scholar

[9] B. F. Soares, K. F. MacDonald, V. A. Fedotov and N. I. Zheludev, Nano Lett., 5 (10), 2104-2107 (2005).

Google Scholar

[10] A. I. Denisyuk, K. F. MacDonald, F. J. García de Abajo and N. I. Zheludev, Japan. J. Appl. Phys., 48 03A065 (2009).

DOI: 10.1143/jjap.48.03a065

Google Scholar

[11] K. F. MacDonald, V. A. Fedotov and N. I. Zheludev, App. Phys. Lett., 82(7), 1087–1089 (2003).

Google Scholar

[12] C. Yi, T.H. Kim, W. Jiao, Y. Yang, A. Lazarides, K. Hingerl, G. Bruno, A. Brown and M. Losurdo, Small, 8 (17), 2721-30 (2012).

DOI: 10.1002/smll.201200694

Google Scholar

[13] G. B. Parravicini, A. Stella, P. Ghigna, G. Spinolo, A. Migliori, F. d'Acapito and R. Kofman, Appl. Phys. Lett., 89, 033123 (2006).

DOI: 10.1063/1.2221395

Google Scholar

[14] S. Camelio, D. Babonneau, D. Lantiat and L. Simonot, Euro. Phys. Lett., 79 (4), 47002 (2007).

DOI: 10.1209/0295-5075/79/47002

Google Scholar

[15] T. W. H. Oates, A. Keller, S. Facsko and A. Mücklich, Plasmonics, 2(2), 47–50 (2007).

Google Scholar

[16] I. V. Shvets, H. C. Wu, V. Usov, F. Cuccureddu, S. K. Arora, and S. Murphy, Appl. Phys. Lett., 92, 023107 (2008).

DOI: 10.1063/1.2834371

Google Scholar

[17] F. Cuccureddu, S. Murphy, I. V. Shvets, M. Porcu, and H. W. Zandbergen, Nano Lett., 8 (10), 3248-3256.

DOI: 10.1021/nl801600w

Google Scholar

[18] R. Verre, K. Fleischer, R. G. S. Sofin, N. McAlinden, J. F. McGilp and I. V. Shvets, Phys. Rev. B, 83, 125432 (2011).

DOI: 10.1103/physrevb.83.125432

Google Scholar

[19] R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang and I. V. Shvets, Nanotechnology 23 (3), 035606 (2012).

DOI: 10.1088/0957-4484/23/3/035606

Google Scholar

[20] R. Verrea, K. Fleischer, O. Ualibek, and I. V. Shvets, Appl. Phys. Lett., 100, 031102 (2012).

Google Scholar

[21] P. Weightman, D. S. Martin, R. J. Cole and T. Farrell, Rep. Prog. Phys., 68, 1251–1341 (2005).

Google Scholar

[22] D. E. Aspnes and A. A. Studna, Phys. Rev. Lett., 54, 1956–1959 (1985).

Google Scholar

[23] O. Ualibek, R. Verre, B. Bulfin, V. Usov, K. Fleischer, J. F. McGilp b and I. V. Shvets, Nanoscale, 5, 4923-4930 (2013).

DOI: 10.1039/c3nr00087g

Google Scholar

[24] M. Born and E. Wolf. Principles of Optics. Seventh ed. Cambridge University Press, (1999).

Google Scholar

[25] L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets and J. F. McGilp, J. Phys. Condens. Matter., 26, 145302 (2014).

DOI: 10.1088/0953-8984/26/14/145302

Google Scholar

[26] A. Shalabney, A. Lakhtakia, I. Abdulhalim, A. Lahav, Christian Patzig, I. Hazek, A. Karabchevsky, Bernd Rauschenbach, F. Zhang and J. Xu, Phot. and Nano. – Funda. and App., 7, 176–185 (2009).

DOI: 10.1016/j.photonics.2009.03.003

Google Scholar

[27] R. Verre, R.G.S. Sofin, V. Usov, K. Fleischer, D. Fox, G. Behan, H. Zhang and I.V. Shvets, Surface Science, 606,1815–1820 (2012).

DOI: 10.1016/j.susc.2012.07.024

Google Scholar

[28] M. Kitayama and A. M. Glaeser, J. Am. Ceram. Soc., 88 (12) 3492–3500 (2005).

Google Scholar

[29] M. Schwind, V. P. Zhdanov, I. Zorić and B. Kasemo, Nano Lett., 10 (3), 931–936 (2010).

DOI: 10.1021/nl100044k

Google Scholar