[1]
Peng K Q, Wang X, Li L, et al. Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013, 8(1): 75-97.
DOI: 10.1016/j.nantod.2012.12.009
Google Scholar
[2]
Beard M C, Knutsen K P, Yu P, et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano letters, 2007, 7(8): 2506-2512.
DOI: 10.1021/nl071486l
Google Scholar
[3]
Kang Z, Liu Y, Tsang C H A, et al. Water‐soluble silicon quantum dots with wavelength‐tunable photoluminescence. Advanced Materials, 2009, 21(6): 661-664.
DOI: 10.1002/adma.200801642
Google Scholar
[4]
Peng K Q, Wang X, Li L, et al. High-performance silicon nanohole solar cells. Journal of the American Chemical Society, 2010, 132(20): 6872-6873.
DOI: 10.1021/ja910082y
Google Scholar
[5]
Yu P, Wu J, Liu S, et al. Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today, 2016, 11(6): 704-737.
DOI: 10.1016/j.nantod.2016.10.001
Google Scholar
[6]
Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Applied Physics Letters, 2004, 84(11): 1850-1852.
DOI: 10.1063/1.1667004
Google Scholar
[7]
Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Applied Physics A, 2004, 79(7): 1635-1641.
DOI: 10.1007/s00339-004-2676-0
Google Scholar
[8]
Ma Z, Jiang C, Yuan W, et al. Large-scale patterning of hydrophobic silicon nanostructure arrays fabricated by dual lithography and deep reactive ion etching. Nano-Micro Letters, 2013, 5(1): 7-12.
DOI: 10.1007/bf03353725
Google Scholar
[9]
Chan Y C, Lee Y K, Zohar Y. High-throughput design and fabrication of an integrated microsystem with high aspect-ratio sub-micron pillar arrays for free-solution micro capillary electrophoresis. Journal of micromechanics and microengineering, 2006, 16(4): 699.
DOI: 10.1088/0960-1317/16/4/005
Google Scholar
[10]
Sun G, Gao T, Zhao X, et al. Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching. Journal of Micromechanics and Microengineering, 2010, 20(7): 075028.
DOI: 10.1088/0960-1317/20/7/075028
Google Scholar
[11]
Sinitskii A, Neumeier S, Nelles J, et al. Ordered arrays of silicon pillars with controlled height and aspect ratio. Nanotechnology, 2007, 18(30): 305307.
DOI: 10.1088/0957-4484/18/30/305307
Google Scholar
[12]
Garnett E, Yang P. Light trapping in silicon nanowire solar cells. Nano letters, 2010, 10(3): 1082-1087.
DOI: 10.1021/nl100161z
Google Scholar
[13]
Wang R P. Defects in silicon nanowires. Applied physics letters, 2006, 88(14): 142104.
Google Scholar
[14]
Kajjam S, Konduri S, Dalal V L. Influence of oxygen contamination on minority carrier lifetime and defect density in nanocrystalline Si. Applied Physics Letters, 2013, 103(9): 093506.
DOI: 10.1063/1.4819204
Google Scholar
[15]
Zhong H, Guo A, Guo G, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching. Nanoscale research letters, 2016, 11(1): 322.
DOI: 10.1186/s11671-016-1528-0
Google Scholar
[16]
Carey J E. Femtosecond-laser microstructuring of silicon for novel optoelectronic devices. Harvard University, (2004).
Google Scholar
[17]
Mazur E, Franta B, Pastor D, et al. Laser doping and texturing of silicon for advanced optoelectronic devices//Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015 11th Conference on. IEEE, 2015, 1: 1-2.
DOI: 10.1109/cleopr.2015.7375844
Google Scholar