[1]
N. Abu Bakar, M.M. Salleh, A.A. Umar, J.G. Shapter, Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 (2017) 025008.
DOI: 10.1088/2043-6254/aa5e22
Google Scholar
[2]
Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, The study of surface plasmon in Au/Ag core/shell compound nanoparticles, Plasmonics 7 (2012) 509-513.
DOI: 10.1007/s11468-012-9336-6
Google Scholar
[3]
L. Chen, J.M. Chabu, Y. Liu, Bimetallic AgM (M = Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering, RSC Adv. 3 (2013) 4391-4399.
DOI: 10.1039/c3ra23137b
Google Scholar
[4]
S.-S. Chen, X.-X. Lin, A.-J. Wang, H. Huang, J.-J. Feng, Facile synthesis of multi-branched AgPt alloyed nanoflowers and their excellent applications in surface enhanced Raman scattering, Sens. Actuators B Chem. 248 (2017) 214-222.
DOI: 10.1016/j.snb.2017.03.129
Google Scholar
[5]
D.T. Mage, R.H. Allen, G. Gondy, W. Smith, D.B. Barr, L.L. Needham, Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III), J. Expo. Sci. Environ. Epidemiol. 14 (2004) 457-465.
DOI: 10.1038/sj.jea.7500343
Google Scholar
[6]
T.L. Wang, H.K. Chiang, H. Lu, Y. Hung, SERS quantitative urine creatinine measurement of human subject, Proc. SPIE 5703, Plasmonics in Biology and Medicine II (31 March 2005) 17-24.
DOI: 10.1117/12.591393
Google Scholar
[7]
S.M.M. Pedersen, C. Nebel, N.C. Nielsen, H.J. Andersen, J. Olsson, M. Simŕen, L. Öhman, U. Svensson, H.C. Bertram, A. Malmendal, A GC-MS-based metabonomic investigation of blood serum from irritable bowel syndrome patients undergoing intervention with acidified milk products, Eur. Food Res. Technol. 233 (2011) 1013-1021.
DOI: 10.1007/s00217-011-1599-1
Google Scholar
[8]
S.V. Marchenko, I.S. Kucherenko, O.O. Soldatkin, A.P. Soldatkin, Potentiometric biosensor system based on recombinant urease and creatinine deiminase for urea and creatinine determination in blood dialysate and serum, Electroanalysis 27 (2015) 1699-1706.
DOI: 10.1002/elan.201400664
Google Scholar
[9]
S. Pal, S. Lohar, M. Mukherjee, P. Chattopadhyay, K. Dhara, A fluorescent probe for the selective detection of creatinine in aqueous buffer applicable to human blood serum, Chem. Commun. 52 (2016) 13706-13709.
DOI: 10.1039/c6cc07291g
Google Scholar
[10]
M. Hardy, M.D. Doherty, I. Krstev, K. Maier, T. Möller, G. Müller, P. Dawson, Detection of low-concentration contaminations in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy, Anal. Chem. 86 (2014) 9006-9012.
DOI: 10.1021/ac5014095
Google Scholar
[11]
P.A. Mosier-Boss, Review of SERS substrates for chemical sensing, Nanomaterials (Basel) 7 (2017) 142.
DOI: 10.3390/nano7060142
Google Scholar
[12]
N.A. Abdullah, N. Abu Bakar, J.G. Shapter, M. Mat Salleh, A.A. Umar, Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 (2017) 025015.
DOI: 10.1088/2043-6254/aa687f
Google Scholar
[13]
A.A. Umar, E. Rahmi, A. Balouch, M.Y.A. Rahman, M.M. Salleh, M. Oyama, Highly-reactive AgPt nanofern composed of {001}-faceted nanopyramidal spikes for enhanced heterogeneous photocatalysis application, J. Mater. Chem. A 2 (2014) 17655-17665.
DOI: 10.1039/c4ta03518f
Google Scholar
[14]
M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, W.-C. Shih, Reagent- and separation-free measurements of urine creatinine concentration using stampingsurface enhanced Raman scattering (S-ERS), Biomed. Opt. Express 6 (2013) 849-858.
DOI: 10.1364/boe.6.000849
Google Scholar