Polyacrylamide Coated on Quartz Crystal Microbalance Electrodes for Highly Sensitive Sensor of Acetic Acid

Article Preview

Abstract:

In many cases, acetic acid is categorized as hazardous to health. A high-performance sensor for detecting acetic acid is urgently required. This study aims to observe the characteristics of quartz crystal microbalance (QCM) coated with polyacrylamide as an acetic acid sensor. For this purpose, we prepared the sensor by firstly coating with 1-dodecanethiol (using self-assembled-monolayers or SAM technique) followed subsequently by glutaraldehyde and polyacrylamide (PAM).As results, the sensors showed less sensitivity to humidity changes, which is one of the basic prerequisites for a stable sensor to an environment. We also obtained that the sensor showed relatively fast response time and high sensitivity to acetic acid vapor of about 96 seconds and 12.9 Hz/(mgL-1), respectively. Further research, however, is still required to improve the sensitivity and specificity by choosing more selective polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-259

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tao, Y.; Cao, X.; Peng, Y.; Liu, Y.; Zhang, R. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3. Microchim. Acta 176, (2012) 485–491.

DOI: 10.1007/s00604-011-0745-6

Google Scholar

[2] National pollutant inventory acetid acid.

Google Scholar

[3] Zhou, D.; Hou, Q.; Liu, W.; Ren, X. Rapid determination of formic and acetic acids in biomass hydrolysate by headspace gas chromatography. J. Ind. Eng. Chem., 47, (2017) 281–287.

DOI: 10.1016/j.jiec.2016.11.044

Google Scholar

[4] Cheng, L.; Ma, S. Y.; Wang, T. T.; Luo, J.; Li, X. B.; Li, W. Q.; Mao, Y. Z.; Gz, D. J. Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2nanoparticles prepared by electrospinning. Mater. Lett. 2014, 137, 265–268.

DOI: 10.1016/j.matlet.2014.09.040

Google Scholar

[5] Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research; 2015; ISBN 978-3-319-07835-9.

Google Scholar

[6] Rianjanu, A.; Julian, T.; Hidayat, S. N.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide sensor based on quartz crystal microbalance technique. J. Phys. Conf. Ser. 2018, 1011, 012067.

DOI: 10.1088/1742-6596/1011/1/012067

Google Scholar

[7] Rianjanu, A.; Hidayat, S. N.; Julian, T.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K. Swelling Behavior in Solvent Vapor Sensing based on Quartz Crystal Microbalance (QCM) Coated Polyacrylonitrile (PAN) Nanofiber. IOP Conf. Ser. Mater. Sci. Eng. 2018, 367, 012020.

DOI: 10.1088/1757-899X/367/1/012020

Google Scholar

[8] Leyva, J. A. M.; Hidalgo de Cisneros, J. L. H.; Gomez de Barreda, D. G. A coated piezoelectric crystal sensor for acetic acid vapour determination. Talanta, 40, (1993) 1725–1729.

DOI: 10.1016/0039-9140(93)80090-E

Google Scholar

[9] Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A. A. Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C2012, 32, 1307–1313.

DOI: 10.1016/j.msec.2011.11.003

Google Scholar

[10] Yan, Y.; Guo, Y. P.; Cai, L. K.; Wu, Q.; Zhou, H.; Wu, L. M. Environmental Monitoring of Acetic Acid Gas by Thin Film Polyaniline Sensor. Adv. Mater. Res. 2013, 864–867, 913–918.

DOI: 10.4028/www.scientific.net/AMR.864-867.913

Google Scholar

[11] Xu, X.; Zhang, N.; Brown, G. M.; Thundat, T. G.; Ji, H. F. Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer. Appl. Biochem. Biotechnol. 2017, 183, 555–565.

DOI: 10.1007/s12010-017-2511-7

Google Scholar

[12] Pourret, A.; Guyot-Sionnest, P.; Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 2009, 21, 232–235.

DOI: 10.1002/adma.200801313

Google Scholar

[13] Rianjanu, A.; Kusumaatmaja, A.; Suyono, E. A.; Triyana, K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon2018, 4, e00592.

DOI: 10.1016/j.heliyon.2018.e00592

Google Scholar

[14] Phong, P. H.; Ooi, Y.; Hobara, D.; Nishi, N.; Yamamoto, M.; Kakiuchi, T. Phase separation of ternary self-assembled monolayers into hydrophobic 1-dodecanethiol domains and electrostatically stabilized hydrophilic domains composed of 2-aminoethanethiol and 2-mercaptoethanesulfonic acid on Au(111). Langmuir 2005, 21, 10581–10586.

DOI: 10.1021/la050444e

Google Scholar

[15] Triyana, K.; Sembiring, A.; Rianjanu, A.; Hidayat, S.; Riowirawan, R.; Julian, T.; Kusumaatmaja, A.; Santoso, I.; Roto, R. Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing. Electronics 2018, 7, 181.

DOI: 10.3390/electronics7090181

Google Scholar

[16] Rianjanu, A.; Roto, R.; Julian, T.; Hidayat, S. N.; Kusumaatmaja, A.; Suyono, E. A.; Triyana, K. Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole. Sensors 2018, 18, 1150.

DOI: 10.3390/s18041150

Google Scholar

[17] Hasdemir, M. Removal of Some Carboxylic Acids from Aqueous Solutions by Hydrogels. 2008, 2351–2355.

DOI: 10.1021/je800230t

Google Scholar

[18] Morris, A. S. Measurement & Instrumentation Principles; Third edit.; Butterworth-Heinemann.

Google Scholar

[19] Ju, J.; Syu, M.; Teng, H.; Chou, S.; Chang, Y. Preparation and identification of ␤ -cyclodextrin polymer thin film for quartz crystal microbalance sensing of benzene , toluene , and p -xylene. 2008, 132, 319–326.

DOI: 10.1016/j.snb.2008.01.052

Google Scholar