[1]
E. S. Kunarti, R. Roto, and A. R. Pradipta, Fe3O4/SiO2/TiO2 core-shell nanoparticles as catalyst for Ag(I) ions, Oriental Jurnal of Chemistry 33 (2017) pp.1933-1940.
DOI: 10.13005/ojc/330439
Google Scholar
[2]
S. Zareia, M. Niada, and H. Raanaeiba, The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations, and DFT studies, Journal of Hazardous Materials 344 (2018) p.258–273.
DOI: 10.1016/j.jhazmat.2017.10.009
Google Scholar
[3]
Misriyani, E. S.Kunarti, and M. Yasuda, Synthesis of Mn(II)-loaded TiXSi1-XO4composite acting as a visible light driven photocatalyst,,Indones. J. Chem 15 (1) (2015) p.43 – 49.
DOI: 10.22146/ijc.21222
Google Scholar
[4]
B. Babu, K. Mallikarjuna, Ch.VenkataReddy, and J. Park, Facile synthesis of Cu@TiO2core shellnanowires for efficient photocatalysis, Materials Letters 176 (2016) p.265–269.
DOI: 10.1016/j.matlet.2016.04.146
Google Scholar
[5]
J. V. Hernandez, S. Coste, A. G. Murillo, F. C.Romo, and A. Kassiba, Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2, Journal of Alloys and Compounds 710 (2017) pp.355-363.
DOI: 10.1016/j.jallcom.2017.03.275
Google Scholar
[6]
M. Ramadhan, A. R. Pradipta, and E. S.Kunarti, Synthesis of Fe3O4/TiO2-Co nanocomposite as model of photocatalyst with magnetic properties,, Materials Science Forum901 (2017) pp.14-19.
Google Scholar
[7]
J. Zhao, Y. Li, Y. Zhu, Y. Wang, and C. Wang, Enhanced CO2photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: Role of metallic Cu, Applied Catalysis A: General 510 (2016) p.34–41.
DOI: 10.1016/j.apcata.2015.11.001
Google Scholar
[8]
I.A. Mkhalid, Visible light photocatalytic synthesis of aniline with an Au/LaTiO3nanocomposites, Journal of Alloys and Compounds 631 (2015) p.298–302.
DOI: 10.1016/j.jallcom.2015.01.101
Google Scholar
[9]
A.V. Rauta, H.M. Yadavb, A. Gnanamanic, S. Pushpavanamd, and S.H. Pawara, Synthesis and characterization of chitosan-TiO2:Cu nanocompositeand their enhanced antimicrobial activity with visible light, Colloids and Surfaces B: Biointerfaces 148 (2016) p.566–575.
DOI: 10.1016/j.colsurfb.2016.09.028
Google Scholar
[10]
A. J. Haider, R. H. AL-Anbari, G. R. Kadhim, and C. T. Salame, Exploring potential environmental applications of TiO2nanoparticles, Energy Procedia 119 (2017) p.332–345.
DOI: 10.1016/j.egypro.2017.07.117
Google Scholar
[11]
C. Garlisi, J. Szlachetko, C. Aubry, D.L.A. Fernandes, Y. Hattori, C. Paun, M.V. Pavliuk, N.S. Rajput, E.Lewin, J. Sá, and G. Palmisano, N-TiO2/Cu-TiO2double-layer films: Impact of stacking order on photocatalytic properties, Journal of Catalysis 353 (2017) p.116–122.
DOI: 10.1016/j.jcat.2017.06.028
Google Scholar
[12]
R.M. Mohamedaand F.M. Ibrahim, Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6nanocomposite, Journal of Industrial and Engineering Chemistry 22 (2015) p.28–33.
DOI: 10.1016/j.jiec.2014.06.021
Google Scholar
[13]
T.D. Pham, B.K. Lee, and C.H. Lee, The advanced removal of benzene from aerosols by photocatalyticoxydation and adsorption of Cu–TiO2/PU under visible light irradiation, Applied Catalysis B: Environmental 182 (2016) p.172–183.
DOI: 10.1016/j.apcatb.2015.09.023
Google Scholar
[14]
M.C. Wu, P.Y. Wua, T.H. Lina, and T.F. Lin, Photocatalytic performance of Cu-doped TiO2nanofibers treated byhydrothermal synthesis and air-thermal treatment, Applied Surface Science 37114 (2017) p.9.
Google Scholar
[15]
B. Ao, Z. Zhang, T. Tang, and Y. Zhao, Roles of Cu concentration in the photocatalytic activities of Cu-doped TiO2 from GGAþU calculations, Solid State Communications 204 (2015) p.23–27.
DOI: 10.1016/j.ssc.2014.12.006
Google Scholar
[16]
F. Bensouicia,M. Bououdinab, A.A. Dakhel, R. Tala-Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, and W. Cai, Optical, structural and photocatalysis properties of Cu-doped TiO2thin films, Applied Surface Science 395 (2017) p.110–116.
DOI: 10.1016/j.apsusc.2016.07.034
Google Scholar
[17]
D. Hong, Z. Yanling, D. Qianlin, W. Junwen, Z. Kan, D. Guangyue, X. Xianmei, and D. Chuanmin, Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@SiO2core and mesoporous CeO2shell,Journal of Rare Earth 35 (10) (2017) p.984.
Google Scholar
[18]
D. Hao, C. Xuefen , Q. Liangdong, and Z. Xiaohui, Fabrication, characterization, and properties of superparamagnetic reduced graphene oxide/Fe3O4hollow sphere nanocomposites, Rare Metal Materials and Engineering 45(7) (2016) pp.1669-1673.
DOI: 10.1016/s1875-5372(16)30137-0
Google Scholar