Thermal and Microstructural Study on Mullite-Based Ceramics from Rice Husk-Alumina Mixtures

Article Preview

Abstract:

This study focuses on the physical and microstructural properties of mullite-based ceramic synthesized by solid-state reaction of rice husk ash (RHA) and alumina (Al2O3). Laser Flash analysis (LFA), Field Emission Scanning Electron Microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX) characterized the effects of the mixtures of RHA and Al2O3 matrix. The results show that the Al2O3rich samples sintered at 1500 °C exhibit the highest thermal diffusivity radiated at 500 °Cwith values varied from 0.258-0.369 mm2/s. The addition of Al2O3 (30-60 wt.%) into RHA enhance the crystallization of mullite on the surface of vitreous particles. The presence of diphasic mullite densified the green bodies,and its crystallites size keep increases (400.78-650.52 nm) by theincrement of the sintering temperature (1200-1500 °C). These results suggested that addition of Al2O3into RHA enhance the thermal diffusivity as the values closer to the thermal diffusivity of pure mullite and have high potential application as thermal insulation material. The properties of mullite-based ceramics listed above such samples M1, where the composition closes to mullite (3:2) have comparable properties to commercialize mullite ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-278

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite—A review, J. Euro. Ceram. Soc.28 (2) (2008) 329-344.

Google Scholar

[2] J. H. Lee, H. J. Choi, S. Y. Yoon, B. K. Kim, H. C. Park, Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique, J. Porous Mat. 20 (1) (2013) 219-226.

DOI: 10.1007/s10934-012-9591-0

Google Scholar

[3] J. Pype, B. Michielsen, S. Mullen, V. Meynen, Impact of inorganic waste fines on the structure of mullite microspheres by reaction sintering, J. Eur. Ceram. Soc. 38 (6) (2018) 2612-2620.

DOI: 10.1016/j.jeurceramsoc.2018.01.030

Google Scholar

[4] V.A. Mymrin, K.P. Alekseev, E. V. Zelinskaya, N.A. Tolmacheva, R.E. Catai, Industrial sewage slurry utilization for red ceramics production, Constr. Build. Mater. 66 (2014) 368-374.

DOI: 10.1016/j.conbuildmat.2014.05.036

Google Scholar

[5] M.F. Serra, M.S. Conconi. M.R. Gauna, G. Suarez, E.F. Aglietti, N.M. Rendtorff, Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure, J. Asian Ceram. Soc. 4(1) (2016) 61-67.

DOI: 10.1016/j.jascer.2015.11.003

Google Scholar

[6] X. Wu, G. Shao, S. Cui, L. Wang, X. Shen, Synthesis of a novel Al2O3–SiO2 composite aerogel with the high specific surface area at elevated temperatures using an inexpensive inorganic salt of aluminum, Ceram. Inter. 42 (1) (2016) 874-882.

DOI: 10.1016/j.ceramint.2015.09.012

Google Scholar

[7] V.A. Drebushchak, L.N. Mylnikova, T.N. Drebushchak, V.V Boldyrev, The investigation of ancient pottery, J. Therm. Anal. Calorim. 82 (3) (2005) 617-626.

DOI: 10.1007/s10973-005-0942-9

Google Scholar

[8] R, Barea, M.I. Osendi, J.M.F. Ferreira, P. Miranzo, Thermal conductivity of highly porous mullite material, Acta Mater. 53 (11) (2005) 3313-3318.

DOI: 10.1016/j.actamat.2005.03.040

Google Scholar

[9] S. Chen, J. Wang, L. Yuan,Q. Li, Composite Design of Low Thermal Conductivity Mullite Brick for Application to Cement Kiln, MATEC Web. Conf. 142 (2018).

DOI: 10.1051/matecconf/201814202008

Google Scholar

[10] R. Zhang, C. Ye, B. Wang,Novel Al2O3–SiO2 aerogel/porous zirconia composite with ultra-low thermal conductivity,J. Porous Mat. 25 (1) (2018) 171–178.

DOI: 10.1007/s10934-017-0430-1

Google Scholar

[11] B. Hildmann, H. Schneider, Thermal Conductivity of 2/1‐Mullite Single Crystals, J. Am. Ceram. Soc. 88 (10) (2005) 2879-2882.

DOI: 10.1111/j.1551-2916.2005.00530.x

Google Scholar