Polyethyleneimine-Modified Quartz Crystal Microbalance and its Characteristics for Detecting Acetic Acid

Article Preview

Abstract:

Acetic acid is a clear liquid with a strong smell of acids. The danger of inhaling acetic acid vapors may cause irritation of the nose and throat. At high vapor levels, acetic acid may cause respiratory inflammation and can cause eye irritation and eye damage permanently. New detection methods of acetic acid are urgently required especially for practical applications. In this study, the acetic acid vapor sensor was developed by depositing polyethyleneimine (PEI) layer onto the two QCM substrates using well-known self-assembled monolayers (SAM) method. As results, the sensor was less sensitive to humidity. The sensor also showed high sensitivity and limit of detection limit (0.85 mg/L) to acetic acid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-299

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] National Institute for Occupational Safety and Health Occupational Safety and Health Guideline for Acetic Acid 1992, 1–7.

Google Scholar

[2] ICSC ICSC: 0363 Acetic Acid.

Google Scholar

[3] Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sberveglieri, G. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control 2009, 20, 873–880.

DOI: 10.1016/j.foodcont.2008.11.006

Google Scholar

[4] Mayr, D.; Margesin, R.; Klingsbichel, E.; Hartungen, E.; Jenewein, D.; Schinner, F.; Mark, T. D. Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry. Appl. Environ. Microbioogy 2003, 69, 4697–4705.

DOI: 10.1128/aem.69.8.4697-4705.2003

Google Scholar

[5] Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research; 2015; ISBN 978-3-319-07835-9.

Google Scholar

[6] Rianjanu, A.; Hidayat, S. N.; Julian, T.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K. Swelling Behavior in Solvent Vapor Sensing based on Quartz Crystal Microbalance (QCM) Coated Polyacrylonitrile (PAN) Nanofiber. IOP Conf. Ser. Mater. Sci. Eng. 2018, 367, 012020.

DOI: 10.1088/1757-899X/367/1/012020

Google Scholar

[7] Rianjanu, A.; Julian, T.; Hidayat, S. N.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide sensor based on quartz crystal microbalance technique. J. Phys. Conf. Ser. 2018, 1011, 012067.

DOI: 10.1088/1742-6596/1011/1/012067

Google Scholar

[8] Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Self-assembly of monolayers of cadmium selenide nanocrystals with dual color emission. Langmuir 1999, 15, 6845–6850.

DOI: 10.1021/la990165p

Google Scholar

[9] Chang, J. B.; Liu, V.; Subramanian, V.; Sivula, K.; Luscombe, C.; Murphy, A.; Liu, J.; Fréchet, J. M. J. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100.

DOI: 10.1063/1.2208743

Google Scholar

[10] Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A. A. Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C 2012, 32, 1307–1313.

DOI: 10.1016/j.msec.2011.11.003

Google Scholar

[11] Xu, X.; Zhang, N.; Brown, G. M.; Thundat, T. G.; Ji, H. F. Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer. Appl. Biochem. Biotechnol. 2017, 183, 555–565.

DOI: 10.1007/s12010-017-2511-7

Google Scholar

[12] Pourret, A.; Guyot-Sionnest, P.; Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 2009, 21, 232–235.

DOI: 10.1002/adma.200801313

Google Scholar

[13] Rianjanu, A.; Kusumaatmaja, A.; Suyono, E. A.; Triyana, K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon 2018, 4, e00592.

DOI: 10.1016/j.heliyon.2018.e00592

Google Scholar

[14] Triyana, K.; Sembiring, A.; Rianjanu, A.; Hidayat, S.; Riowirawan, R.; Julian, T.; Kusumaatmaja, A.; Santoso, I.; Roto, R. Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing. Electronics 2018, 7, 181.

DOI: 10.3390/electronics7090181

Google Scholar

[15] Rianjanu, A.; Roto, R.; Julian, T.; Hidayat, S. N.; Kusumaatmaja, A.; Suyono, E. A.; Triyana, K. Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole. Sensors 2018, 18, 1150.

DOI: 10.3390/s18041150

Google Scholar

[16] Cheng, L.; Ma, S. Y.; Wang, T. T.; Luo, J.; Li, X. B.; Li, W. Q.; Mao, Y. Z.; Gz, D. J. Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2nanoparticles prepared by electrospinning. Mater. Lett. 2014, 137, 265–268.

DOI: 10.1016/j.matlet.2014.09.040

Google Scholar