The Role of Reduced Graphene Oxide Concentration as Ablated Material on Optical Properties of Graphene Quantum Dots

Article Preview

Abstract:

We report the synthesize of Graphene Quantum Dots (GQDs) using ablation method with reduced Graphene Oxide (rGO) solution as a starting material. We have varied the concentration of rGO as following: 0.5, 2, 5 mg/ml and then have ablated them using 800 nm Ti-Sapphire femtosecond laser to obtain GQDs. From the UV-Vis data, we observed that the more concentration of rGO is being ablated, the more secondary absorption peak at 255.1 nm appeared. This secondary absorption peak is a characteristic of n-π* bonding due to the presence of oxygen defect which occurs as a result of the interaction between the laser and the water in rGO solution. We conclude that the population of oxigen defect in GQDs is increasing, following the increase of rGO concentration and could alter the optical properties of GQD. On the other hand, using Tauc’s plot, we confirm that the increase of rGO concentration as the ablated material does not alter GQDs optical band gap. However, it will slightly reduce both, direct and indirect Oxygen defect related optical band gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-273

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science. 306.5696 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] R. R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Universal dynamic conductivity and quantized visible opacity of suspended Graphene, arXiv. (2008) 0803.3718.

DOI: 10.1126/science.1156965

Google Scholar

[3] P.R. Wallace, The band theory of graphite, Physical Review. 71.9 (1947) 622.

Google Scholar

[4] A. D. Güçlü, P. Potasz, and P. Hawrylak, Excitonic absorption in gate-controlled graphene quantum dots, Physical Review B. 82.15 (2010) 155445.

DOI: 10.1103/physrevb.82.155445

Google Scholar

[5] D. Pan, C. Xi, Z. Li, L. Wang, Z. Chen, B. Lu, M. Wu, Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO 2 nanotube arrays, Journal of Materials Chemistry A. 1.11 (2013) 3551-3555.

DOI: 10.1039/c3ta00059a

Google Scholar

[6] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, S.P. Lau, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano. 6.6 (2012) 5102-5110.

DOI: 10.1021/nn300760g

Google Scholar

[7] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chemical communications. 47.24 (2011) 6858-6860.

DOI: 10.1039/c1cc11122a

Google Scholar

[8] X. Chen, X. Zhou, T. Han, J. Wu, J. Zhang, S. Guo, Stabilization, and induction of oligonucleotide i-motif structure via graphene quantum dots, ACS nano. 7.1 (2012) 531-537.

DOI: 10.1021/nn304673a

Google Scholar

[9] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots, Advanced materials. 22.6 (2010) 734-738.

DOI: 10.1002/adma.200902825

Google Scholar

[10] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission, Rsc Advances. 2.7 (2012) 2717-2720.

DOI: 10.1039/c2ra20182h

Google Scholar

[11] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics, Advanced materials. 23.6 (2011) 776-780.

DOI: 10.1002/adma.201003819

Google Scholar

[12] L. A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science. 320.5874 (2008) 356-358.

DOI: 10.1126/science.1154663

Google Scholar

[13] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, S. P. Lau, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano. 6.6 (2012) 5102-5110.

DOI: 10.1021/nn300760g

Google Scholar

[14] N. Mohanty, D. Moore, Z. Xu, T.S. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size, Nature communications. 3 (2012) 844.

DOI: 10.1038/ncomms1834

Google Scholar

[15] S. Zhuo, S. Mingwang, and L. Shuit-Tong, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS nano. 6.2 (2012) 1059-1064.

DOI: 10.1021/nn2040395

Google Scholar

[16] R.P. Choudhary, S. Shukla, K. Vaibhav, P.B. Pawar, S. Saxena, Optical properties of few layered graphene quantum dots, Materials Research Express. 2.9 (2015) 095024.

DOI: 10.1088/2053-1591/2/9/095024

Google Scholar

[17] P. Russo, A. Hu, G. Compagnini, W.W. Duleyd, N.Y. Zhou, Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots, Nanoscale. 6.4 (2014) 2381-2389.

DOI: 10.1039/c3nr05572h

Google Scholar

[18] X. Yan, C. Xiao, and L. Liang-shi, Synthesis of large, stable colloidal graphene quantum dots with tunable size, Journal of the American Chemical Society. 132.17 (2010) 5944-5945.

DOI: 10.1021/ja1009376

Google Scholar

[19] J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Transforming C 60 molecules into graphene quantum dots, Nature nanotechnology. 6.4 (2011) 247.

DOI: 10.1038/nnano.2011.30

Google Scholar

[20] J.A. Johnson, C.J. Benmore, S. Stankovich, R.S. Ruoff, A neutron diffraction study of nano-crystalline graphite oxide, Carbon. 47.9 (2009) 2239-2243.

DOI: 10.1016/j.carbon.2009.04.016

Google Scholar

[21] S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate), Journal of Materials Chemistry. 16.2 (2006) 155-158.

DOI: 10.1039/b512799h

Google Scholar

[22] H. Suhendar, A. Kusumaatmaja, K. Triyana, I. Santoso, Effect of Chemical Reduction Temperature on Optical Properties of Reduced Graphene Oxide (rGO) and its Potentials Supercapacitor Device, Material Science Forum, 901 (2017) 55-61.

DOI: 10.4028/www.scientific.net/msf.901.55

Google Scholar

[23] S.L. Chin, and S. Lagacé, Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization, Applied optics. 35.6 (1996) 907-911.

DOI: 10.1364/ao.35.000907

Google Scholar

[24] M. Fox, Optical properties of solids, Vol. 3, Oxford university press, (2010).

Google Scholar