An Interplay Role between Ammonium and Halide Anions as Additives in Perovskite CH3NH3PbI3

Article Preview

Abstract:

Methylammonium lead trihalide perovskites have emerged as attractive materials for solar cell applications. The major eminence of this materials can be crystallized via various solution methods to produce the solid state of thin films. However, the crystallinity of perovskite depends on the composition of perovskites. Here, we study NH4Cl and NH4Br as precursor additives for improving crystallinity of perovskites. Perovskite was synthesized by mixing precursor solutions of CH3NH3I and Pb(Ac)2with or without additives NH4Cl and NH4Br using the one-step spin-coating method. By characterizing the thin films using XRD, SEM and UV-Vis spectrophotometer, we found anion Cl and Br performed an important role toward crystallinity, morphology, and optical absorption of perovskites, respectively. Meanwhile, ammonium has assisted to facile remove the residual DMSO solvent confirmed by FTIR. These results shed light on using ammonium halides as potentially dual side additives in the synthesis of perovskites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-293

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Green, A. Ho-Baillie, Perovskite solar cells: The birth of a new era in photovoltaics, ACS Energy Lett. 2 (2017) 822–830.

DOI: 10.1021/acsenergylett.7b00137

Google Scholar

[2] F.D. Angelis, D. Meggiolaro, E. Mosconi, A. Petrozza, M.K. Nazeeruddin, H.J. Snaith, Trends in perovskite solar cells and optoelectronics: Status of research and applications from the psco conference, ACS Energy Lett. 2 (2017) 857–861.

DOI: 10.1021/acsenergylett.7b00217

Google Scholar

[3] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051.

DOI: 10.1021/ja809598r

Google Scholar

[4] W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Iodide management in formamidinium-lead-halide – based perovskite layers for efficient solar cells, Science 356 (2017) 1376–1379.

DOI: 10.1126/science.aan2301

Google Scholar

[5] J. Gong, S.B. Darling, F. You, Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts, Energy Environ. Sci. 8 (2015) 1953–(1968).

DOI: 10.1039/c5ee00615e

Google Scholar

[6] T. Wu, J. Wu, Y. Tu, X. He, Z. Lan, M. Huang, J. Lin, Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%, J. Power Sources 365 (2017) 1–6.

DOI: 10.1016/j.jpowsour.2017.08.074

Google Scholar

[7] F.K. Aldibaja, L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea, I. Mora-Sero, Effect of different lead precursors on perovskite solar cell performance and stability, J. Mater. Chem. A (3) (2015) 9194–9200.

DOI: 10.1039/c4ta06198e

Google Scholar

[8] N.-G. Park, Methodologies for high efficiency perovskite solar cells, Nano Converg. 3 (2016) 15.

Google Scholar

[9] T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, Additive engineering for highly efficient organic – inorganic halide perovskite solar cells : recent advances and perspectives, J. Mater. Chem. A Mater. energy Sustain., 00 (2017) 1–51.

DOI: 10.1039/c7ta01798g

Google Scholar

[10] P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, A.K.Y. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Adv. Mater. 26 (2014) 3748–3754.

DOI: 10.1002/adma.201400231

Google Scholar

[11] H.J. Yen, P.W. Liang, C.C. Chueh, Z. Yang, A.K.Y. Jen, H.L. Wang, Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability, ACS Appl. Mater. Interfaces 8 (2016) 14513–14520.

DOI: 10.1021/acsami.6b02169

Google Scholar

[12] H. Tsai, W. Nie, Y.H. Lin, J.C. Blancon, S. Tretiak, J. Even, G. Gupta, P.M. Ajayan, A.D. Mohite, Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells, Adv. Energy Mater. 7 (2017) 1–9.

DOI: 10.1002/aenm.201602159

Google Scholar

[13] H. Rong, Yaoguang. Hou, Xiaomeng. Hu, Yue. Mei, Anyi. Liu, Linfeng. Wang, Ping. Han, Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells, Nat. Commun. 8 (2017) 1–8.

DOI: 10.1038/ncomms14555

Google Scholar

[14] S. Lou, T. Xuan, C. Yu, M. Cao, C. Xia, J. Wang, H. Li, Nanocomposite of CsPbBr3 perovskite nanocrystals in an ammonium bromide frame with enhanced stability, J. Mater. Chem. C 5 (2017) 7431-7435.

DOI: 10.1039/c7tc01174a

Google Scholar

[15] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764–1769.

DOI: 10.1021/nl400349b

Google Scholar

[16] L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang, K. Chen, T. Liu, Y. Liu, Y. Zhang, F. Liu, T.P. Russell, H.J. Snaith, R. Zhu, Q. Gong, High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with effi ciency exceeding 18%, Adv. Funct. Mater. 26 (2016) 3508–3514.

DOI: 10.1002/adfm.201601175

Google Scholar

[17] D.V. Shinde, L. Pyeon, M. Pei, G.-W. Kim, H. Yang, T. Park, Enhanced efficiency and stability of an aqueous lead-nitrate-based organometallic perovskite solar cell, ACS Appl. Mater. Interfaces 9 (2017) 14023–14030.

DOI: 10.1021/acsami.7b01864

Google Scholar

[18] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.Il Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897–903.

DOI: 10.1038/nmat4014

Google Scholar

[19] N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide, J. Am. Chem. Soc. 137 (2015) 8696–8699.

DOI: 10.1021/jacs.5b04930

Google Scholar