In Situ Rapid Dechlorination by Microwave-Assisted Catalytic Reduction of Chlorobenzene and 1,4-Dichlorobenzene on Raney Ni-Al Alloy Catalyst

Article Preview

Abstract:

Microwave-assisted catalytic reductive dechlorination on Raney Ni-Al alloy catalyst is an efficient method for treatment of chlorobenzene (CB) and 1,4-dichlorobenzene (1,4-DCB). The result shows that the Raney Ni-Al alloy catalyst retains its high activity in this in-situ reductive dechlorination reaction. The reductive dechlorination reaction was in accordance of a psendo-second-order reaction kinetics under the microwave irradiation. The apparent reductive reaction rate constant of CB dechlorination was 0.0175 L/mol·min at 30°C and 0.114 L/ mol·min at 50°C, and the activation energy Ea was 76.24 kJ/mol. The reaction rate constant of 1,4-DCB dechlorination was 0.0376 L/ mol·min at 35 °C and 0.151 L/ mol·min at 50 °C, and the activation energy Ea was 76.66 kJ/mol. The dechlorination for CB and 1,4-DCB was rapid and complete under mild conditions. It shows that the microwave-assisted catalytic in-situ reductive dechlorination on Raney Ni-Al alloy catalyst is an effective method for dechlorination of polychlorinated organic compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-116

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kargi F. and Konya I. J. Environ. Manage Vol. 84(2007), p.20.

Google Scholar

[2] Weber J., Halsall C. J., Muir D., Teixeira C., Small J., Solomon K., Hermanson M., Hung H. and Bidleman T. Sci. Total Environ. Vol. 408(2010), p.6086.

Google Scholar

[3] Montserrat P. M., Moisès G., Luis J. V., Enric C., Héctor D. M. Catal. Today Vol. 124(2007), p.163.

Google Scholar

[4] Caride A., Lafuente A. and Cabaleiro T. Toxicol. Lett. Vol. 197(2010), p.106.

Google Scholar

[5] Golubina E.V., Lokteva E. S., Lunin V. V., Telegina N.S., Stakheev A. Y., Tundo P. Appl. Catal. A-Gen Vol. 302(2006), p.32.

DOI: 10.1016/j.apcata.2005.12.020

Google Scholar

[6] Han, Y., et al., Chemosphere, Vol. 72(2008), p.53.

Google Scholar

[7] Janiak, T. P. Appl. Catal. A-Gen Vol. 335(2008), p.7.

Google Scholar

[8] Long M., Ilhan Z. E., Xia S., Zhou., Rittmann B. E. Wat. Res. Vol. 144(2018), p.134.

Google Scholar

[9] Swatantra P. S. and Purnendu B. RSC Adv. Vol. 5(2015), p.94418.

Google Scholar

[10] Zhu B.W., Lim T.T. and Feng J. Chemosphere Vol. 65(2006), p.1137.

Google Scholar

[11] Tundo P., Perosa A. and Zinovyev S. J. Mol. Catal. A-Gen Vol. 204-205(2003), p.747.

Google Scholar

[12] Zinovyev, S. Perosa A., Yufit S. and Tundo P. J. Catal. Vol. 211 (2002), p.347.

Google Scholar

[13] Zinovyev, S., Shelepchikov A. and Tundo P. Appl. Catal. B Vol. 72(2007), p.75.

Google Scholar

[14] Zinovyev, S. and Tundo P. Appl. Catal. B. Vol. 75(2007), p.124.

Google Scholar

[15] Zinovyev S.S., Shinkova N.A., Perosa A. and Tundo P. Appl. Catal. B. Vol. 55(2005), p.39.

Google Scholar

[16] Zinovyev S.S., Shinkova N.A., Perosa A. and Tundo P. Appl. Catal. B. Vol. 47(2005), p.27.

Google Scholar

[17] Guo, H. and Ding K. Tetrahedron Lett. Vol. 41(2000), p.10061.

Google Scholar

[18] Liu, G.-B., Tsukinoki T., Kanda T., Mitoma Y. and Tashiro M. Tetrahedron Lett. Vol. 39(1998), p.5991.

Google Scholar

[19] Liu G.-B. Green Chem. Vol. 8(2006), p.781.

Google Scholar

[20] Ryazanov A.I., Pavlov S.A. and Kiritani M. Mat. Sci. Eng. A Vol. 350(2003), p.245.

Google Scholar

[21] Haque K. E., Int. J. Mine. Process Vol. 57(1999), p.1.

Google Scholar