[1]
Ch. A. Harper, Modern plastics handbook. Technology Seminars, Inc., Lutherville, Maryland, (1999).
Google Scholar
[2]
E. J. North, R. U. Halden, Plastics and Environmental Health: The Road Ahead. Rev Environ Health (2013). Information on https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791860.
Google Scholar
[3]
D. Mihov, B. Katerska, Some Biocompatible Materials Used in Medical Practice. Trakia Journal of Sciences, Vol. 8, Suppl. 2, (2010) pp.119-125. Information on https://pdfs.semanticscholar.org/b083/a7c4a7e4de6ffc4525e1d13a0839f322db80.pdf.
Google Scholar
[4]
C.P. Bergmann, A. Stumpf, Dental Ceramics: Microstructure, Properties and Degradation (2013), VII, 84 p. ISBN: 978-3-642-38223-9.
Google Scholar
[5]
R. Păcurar, A. Păcurar, Applications of the Selective Laser Melting Technology in the Industrial and Medical Fields, in: I.V. Shishkovsky (Ed.), New Trends in 3D Printing, IN-Tech, Rijeka, (2016).
Google Scholar
[6]
C. Cosma, N. Bâlc, M. Moldovan, L. Morovič, P. Gogola, C. Miron Borzan, Post-processing of customized implants made by laser beam melting from pure Titanium, J. Optoelectron. Adv. M. 11-12 (2017) 738-747.
Google Scholar
[7]
C.Ş. Borzan, P. Berce, H. Chezan, E. Sabău, S.A. Radu, M. Ridzoň, Physico-Mechanical Properties Characterization of the Parts from PA 2200 Manufactured by Selective Laser Sintering Technology, Academic Journal of Manufacturing Engineering. 11 (2013) 108-113.
Google Scholar
[8]
H. N. Chia, B. M. Wu, Recent advances in 3D printing of biomaterials, Journal of Biological Engineering (2015) 9:4. Information on https://www.ncbi.nlm.nih.gov.
Google Scholar
[9]
I. Molnár, Research of design and manufacture of orthopedic appliance by 3D digitizing and Rapid Prototyping. [Written project for dissertation examination]-Slovak University of Technology in Bratislava. Faculty of Materials Science and Technology in Trnava. Institute of Production Technologies – Supervisor: doc. Ing. Ladislav Morovič, PhD. – Trnava: MTF STU, (2018) 73 p.
DOI: 10.17973/mmsj.2021_12_2021128
Google Scholar
[10]
R. P. Pawar, S. U. Tekale, S. U. Shisodia, J. T. Totre, A. J. Domb, Biomedical Applications of Poly(Lactic Acid). Recent Patents on Regenerative Medicine (2014) 4, pp.40-51. Information on https://www.researchgate.net.
DOI: 10.2174/2210296504666140402235024
Google Scholar
[11]
K. Hamad, M. Kaseem, H. W. Yang, F. Deri, Y. G. Ko, Properties and medical applications of polylactic acid: a review. eXPRESS Polymer Letters Vol.9, No.5 (2015) p.435–455. Information on https://www.expresspolymlett.com.
DOI: 10.3144/expresspolymlett.2015.42
Google Scholar
[12]
Prints of Polylactic acid (PLA, polylactide) bioplastic, chemical structure. Compostable polymer used in medical implants, 3D printing, packaging materials, etc., Fotosearch. Information on https://www.fotosearch.com/impresion/CSP996/k17261426.
Google Scholar
[13]
R. Rebelo, M. Fernandes, R. Fangueiro, Biopolymers in Medical Implants: A Brief Review. Procedia Engineering (2017) p.236–243. Information on https://www.sciencedirect.com.
DOI: 10.1016/j.proeng.2017.07.034
Google Scholar
[14]
Royal Screw, Royal Medical. Information on http://royalmedicalltd.com/royal-screw.
Google Scholar
[15]
R. A. A. Alsaheb, A. Aladdin, N. Z. Othman, R. A. Maleki, O. M. Leng, R. Aziz, H. A. El Enhasy, Recent application of polylactic acid in pharmaceutical and medical industries. Journal of Chemical and Pharmaceutical Research, 2015, 7(12):51-63. Information on https://www.jocpr.com.
Google Scholar
[16]
Stretch blowmolding modifies bioresorbable stent properties, Design News (2012). Information on https://www.designnews.com/content/stretch-blowmolding-modifies-bioresorbable-stent- properties/37936242517379.
Google Scholar
[17]
M. A. Cuiffo, J. Snyder, A. M. Elliott, N. Romerro, S. Kannan, G. P. Halada, Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. (2017).
DOI: 10.20944/preprints201704.0010.v1
Google Scholar
[18]
L. Morovič, Non-Contact Measurement of Free-Form Surfaces, Aleš Čeněk, Plzeň, (2016).
Google Scholar
[19]
J. Vagovský, I. Buranský, A. Görög, Evaluation of measuring capability of the optical 3D scanner, Procedia Engineering. 100 (2015) 1198-1206.
DOI: 10.1016/j.proeng.2015.01.484
Google Scholar