Metallothermic Reduction at Low Temperature Synthesis of Ti4O7 Powder with Lithium Ion Insertion/Extraction Property

Article Preview

Abstract:

In this work, a thermal reduction process via ultrafine titanium powder as the reducing agent under argon atmosphere is firstly used to prepare Ti4O7. Compared with the conventional method, this experiment process reduces the sintering temperature to 850°C. The phase transformation and the morphology of the as-prepared powders are examined by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). Besides, it is found that the Ti4O7 powders obtained by titanium thermal reduction method exhibited the crystal structure, distinctly possessing an average particle size around 750 nm. The as-prepared Ti4O7 nanoparticles are used as anode active material in lithium battery. The results demonstrate that the anode with Ti4O7 calcined at 850°C by titanium thermal reduction method exhibited insertion/extraction lithium ion property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-66

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Guo, Y. Jing, B. P. Chaplin, Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes, Environ. Sci. Technol. 50 (2016) 1428-36.

DOI: 10.1021/acs.est.5b04366

Google Scholar

[2] M. Weissmann, R. Weht, Electronic and magnetic properties of the different phases of Ti{4} O {7} from density functional theory, Phys. Rev. B. 84(2011) 144419.

Google Scholar

[3] T. Ishigaki, Y. Li, E. Kataoka, Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. J. Am. Ceram. Soc. 86 (2003) 1456-1463.

DOI: 10.1111/j.1151-2916.2003.tb03496.x

Google Scholar

[4] A. Kitada, G. Hasegawa, Y. Kobayashi, K. Kanamori, K. Nakanishi, Selective preparation of macroporous monoliths of conductive titanium oxides Ti(n)O(2n-1) (n = 2, 3, 4, 6). J. Am. Chem. Soc., 134 (2012) 10894- 10898.

DOI: 10.1021/ja302083n

Google Scholar

[5] D. E. Bullard, D. C. Lynch, Reduction of titanium dioxide in a nonequilibrium hydrogen plasma, Metall. Mater. Trans. B 28(1997) 1069-1080.

DOI: 10.1007/s11663-997-0061-z

Google Scholar

[6] P. Paunovic, O. Popovski, E. Fidancevskac, B. Ranguelov, D. Gogovsk, A. Dimitrov, S. Jordanov. Co-Magneli phases electrocatalysts for hydro/oxygen evolution, Int. J. Hydrogen Energy 35 (2010) 10073-10080.

DOI: 10.1016/j.ijhydene.2010.07.143

Google Scholar

[7] R. West, Handbook of Chemistry and Physics, New York (1987).

Google Scholar

[8] R. Bartholomew, D. Frankl, Electrical Properties of Some Titanium Oxides, Phys. Rev., 187 (1969) 828.

DOI: 10.1103/physrev.187.828

Google Scholar

[9] L. Bursill, B. Hyde, Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics, Prog. Solid State Chem. 7 (1972) 177-253.

DOI: 10.1016/0079-6786(72)90008-8

Google Scholar

[10] D. Bejan, J. Malcolm, L. Morrison, N. Bunce, Mechanistic investigation of the conductive ceramic Ebonex as an anode material, Electrochim. Acta, 54(2009) 5548-5556.

DOI: 10.1016/j.electacta.2009.04.057

Google Scholar

[11] T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stochiometric titanium oxide-supported platinum electro-catalyst for polymer electrolyte fuel cells, Electrochem. Commun. 7 (2005) 183-188.

DOI: 10.1016/j.elecom.2004.12.007

Google Scholar

[12] K. Ellis, A. Hill, J. Hill, A. Loyns, The performance of Ebonex® electrodes in bipolar lead-acid batteries, J. Power Sources, 136 (2004) 366-371.

DOI: 10.1016/j.jpowsour.2004.03.025

Google Scholar

[13] A. Loyns, A. Hill, K. Ellis, Bipolar batteries based on Ebonex® technology, J. Power Sources 144 (2005) 329-337.

DOI: 10.1016/j.jpowsour.2004.11.048

Google Scholar

[14] L. Xiaoxia, L. Aaron, Q. Wei, W. Haijiang, H. Rob, Z. Lei, Z. Jiujun, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries Electrochim. Acta, 55 (2010) 5891-5898.

DOI: 10.1016/j.electacta.2010.05.041

Google Scholar

[15] S. Yao, S. Xue, Y. Zhang, X. Shen, X. Qian, T. Li, K. Xiao, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7, Mater. Sci-Mater. El. 28 (2017) 7264-7270.

DOI: 10.1007/s10854-017-6410-z

Google Scholar

[16] R. Broup, J. Meyers, B. Pivovar, Y. Kim, R. Mukundan, N. Garland, D. Myers, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chem. Rev. 107 (2007) 3904-3951.

DOI: 10.1021/cr050182l

Google Scholar

[17] A. Zaky, B. Chaplin, Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment, Environ. Sci. Technol. 47( 2013) 6554-6563.

DOI: 10.1021/es401287e

Google Scholar

[18] A. Zaky, B. Chaplin, Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane, Environ. Sci. Technol. 48 (2014) 5857-5867.

DOI: 10.1021/es5010472

Google Scholar

[19] A. Gusev, E. Accakumov, Z. Medvedev, A. Masliy, Ceramic Electrodes Based on Magneli Phases of Titanium Oxides, Sci.Sinter. 39 (2007) 51-57.

DOI: 10.2298/sos0701051g

Google Scholar

[20] M. Toyoda, T. Yano, B. Tryba, S. Mozia, T. Tsumura, M. Inagaki, Preparation of carbon-coated Magneli phases TinO2n−1 and their photocatalytic activity under visible light, Appl. Catal. B. 88 (2009) 160-164.

DOI: 10.1016/j.apcatb.2008.09.009

Google Scholar

[21] S. Andersson, B. Collen, G. Kruuse, U. Kuylenstierna, A. Magnéli, H. Pestmalis, S. Asbrink H. Pestmalis, S. Åsbrink (1957) Phase analysis studies on the titanium–oxygen system, Acta Chem. Scand. 11 (1957) 1653-1657.

DOI: 10.3891/acta.chem.scand.11-1653

Google Scholar

[22] C. Tang, D. Zhou, Q. Zhang. Synthesis and characterization of Magneli phases: Reduction of TiO2 in a decomposed NH3 atmosphere, Mater. Lett. 79 (2012) 42-44.

DOI: 10.1016/j.matlet.2012.03.095

Google Scholar

[23] E. Fredriksson, J. Carlsson, Chemical Vapour Deposition of TiO and Ti2O3 from TiCl4/H2/CO2 Gas Mixtures, Surf. Coat. Technol. 73 (1995) 160-169.

DOI: 10.1016/0257-8972(94)02378-6

Google Scholar

[24] B. Xu, D. Zhao, H. Sohn, Y. Mohassab, B. Yang, Y. Lan, J. Yang, Flash synthesis of Magnéli phase (TinO2n-1) nanoparticles by thermal plasma treatment of H2TiO3, Mater. Lett., 79 (2012) 42-44.

DOI: 10.1016/j.ceramint.2017.11.184

Google Scholar

[25] A. Gusev, E. Avvakumov, O. Vinokurova, Synthesis of Ti4O7 magneli phase using mechanical activation,Sci. Sinter. 35 (2003) 141-145.

DOI: 10.2298/sos0303141g

Google Scholar

[26] R. Zhu, Y. Liu, Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductivity and optical properties, J. Mater. Sci. Mater. Electron. 24 (2013) 4853-4856.

DOI: 10.1007/s10854-013-1487-5

Google Scholar

[27] S. Rezan, G. Zhang, O. Ostrovski, Effect of Gas Atmosphere on Carbothermal Reduction and Nitridation of Titanium Dioxide, Metall. Mater. Trans. B 43 (2012) 73-81.

DOI: 10.1007/s11663-011-9574-6

Google Scholar

[28] X. Li, Y. Liu, J. Ye, Investigation of fabrication of Ti4O7 by carbothermal reduction in argon atmosphere and vacuum, Mater. Sci. Mater. El. 27 (2016) 3683-3692.

DOI: 10.1007/s10854-015-4208-4

Google Scholar

[29] Y. Wang, F. Li, B. Yan, T. Fan, M. Xu, H. Gong, Kinetic study on preparation of substoichiometric titanium oxide via carbothermal process, J. Therm. Anal. Calorim. 122 (2015) 635-644.

DOI: 10.1007/s10973-015-4743-5

Google Scholar

[30] J. Ye, G. Wang, X. Li, Y. Liu, R. Zhu, Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering, J. Mater. Sci. Mater. El. 26 (2015) 4683-4690.

DOI: 10.1007/s10854-015-2838-1

Google Scholar

[31] G. Wang, Y. Liu, J. Ye, W. Qiu, Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders, J. Alloys Compd. 704 (2017) 18-25.

DOI: 10.1016/j.jallcom.2017.02.022

Google Scholar

[32] J. Smith, F. Walsh, R. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials, J. Appl. Electrochem. 28 (1998) 1021-1023.

Google Scholar

[33] H. Wei, E. Rodriguez, A. Best, A. Hollenkamp, D. Chen, R. Caruso, Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti4O7 Microspheres for High-Performance Li-S Battery, Adv. Energy Mater. 7 (2016) 1601616.

DOI: 10.1002/aenm.201601616

Google Scholar

[34] M. Umeda, K. Dokko, Y. Fujita, M. Mohamedi, I. Uchida, J. Selman, Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochim. Acta, 47 (2001) 885-890.

DOI: 10.1016/s0013-4686(01)00799-x

Google Scholar

[35] Y. Yang, B. Qiao, X. Yang, L. Fang, C. Pan, W. Song, H. Hou, X. Ji, Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery, Adv. Funct. Mater. 24 (2014) 4349-4356.

DOI: 10.1002/adfm.201304263

Google Scholar