[1]
L. Guo, Y. Jing, B. P. Chaplin, Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes, Environ. Sci. Technol. 50 (2016) 1428-36.
DOI: 10.1021/acs.est.5b04366
Google Scholar
[2]
M. Weissmann, R. Weht, Electronic and magnetic properties of the different phases of Ti{4} O {7} from density functional theory, Phys. Rev. B. 84(2011) 144419.
Google Scholar
[3]
T. Ishigaki, Y. Li, E. Kataoka, Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. J. Am. Ceram. Soc. 86 (2003) 1456-1463.
DOI: 10.1111/j.1151-2916.2003.tb03496.x
Google Scholar
[4]
A. Kitada, G. Hasegawa, Y. Kobayashi, K. Kanamori, K. Nakanishi, Selective preparation of macroporous monoliths of conductive titanium oxides Ti(n)O(2n-1) (n = 2, 3, 4, 6). J. Am. Chem. Soc., 134 (2012) 10894- 10898.
DOI: 10.1021/ja302083n
Google Scholar
[5]
D. E. Bullard, D. C. Lynch, Reduction of titanium dioxide in a nonequilibrium hydrogen plasma, Metall. Mater. Trans. B 28(1997) 1069-1080.
DOI: 10.1007/s11663-997-0061-z
Google Scholar
[6]
P. Paunovic, O. Popovski, E. Fidancevskac, B. Ranguelov, D. Gogovsk, A. Dimitrov, S. Jordanov. Co-Magneli phases electrocatalysts for hydro/oxygen evolution, Int. J. Hydrogen Energy 35 (2010) 10073-10080.
DOI: 10.1016/j.ijhydene.2010.07.143
Google Scholar
[7]
R. West, Handbook of Chemistry and Physics, New York (1987).
Google Scholar
[8]
R. Bartholomew, D. Frankl, Electrical Properties of Some Titanium Oxides, Phys. Rev., 187 (1969) 828.
DOI: 10.1103/physrev.187.828
Google Scholar
[9]
L. Bursill, B. Hyde, Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics, Prog. Solid State Chem. 7 (1972) 177-253.
DOI: 10.1016/0079-6786(72)90008-8
Google Scholar
[10]
D. Bejan, J. Malcolm, L. Morrison, N. Bunce, Mechanistic investigation of the conductive ceramic Ebonex as an anode material, Electrochim. Acta, 54(2009) 5548-5556.
DOI: 10.1016/j.electacta.2009.04.057
Google Scholar
[11]
T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stochiometric titanium oxide-supported platinum electro-catalyst for polymer electrolyte fuel cells, Electrochem. Commun. 7 (2005) 183-188.
DOI: 10.1016/j.elecom.2004.12.007
Google Scholar
[12]
K. Ellis, A. Hill, J. Hill, A. Loyns, The performance of Ebonex® electrodes in bipolar lead-acid batteries, J. Power Sources, 136 (2004) 366-371.
DOI: 10.1016/j.jpowsour.2004.03.025
Google Scholar
[13]
A. Loyns, A. Hill, K. Ellis, Bipolar batteries based on Ebonex® technology, J. Power Sources 144 (2005) 329-337.
DOI: 10.1016/j.jpowsour.2004.11.048
Google Scholar
[14]
L. Xiaoxia, L. Aaron, Q. Wei, W. Haijiang, H. Rob, Z. Lei, Z. Jiujun, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries Electrochim. Acta, 55 (2010) 5891-5898.
DOI: 10.1016/j.electacta.2010.05.041
Google Scholar
[15]
S. Yao, S. Xue, Y. Zhang, X. Shen, X. Qian, T. Li, K. Xiao, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7, Mater. Sci-Mater. El. 28 (2017) 7264-7270.
DOI: 10.1007/s10854-017-6410-z
Google Scholar
[16]
R. Broup, J. Meyers, B. Pivovar, Y. Kim, R. Mukundan, N. Garland, D. Myers, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chem. Rev. 107 (2007) 3904-3951.
DOI: 10.1021/cr050182l
Google Scholar
[17]
A. Zaky, B. Chaplin, Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment, Environ. Sci. Technol. 47( 2013) 6554-6563.
DOI: 10.1021/es401287e
Google Scholar
[18]
A. Zaky, B. Chaplin, Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane, Environ. Sci. Technol. 48 (2014) 5857-5867.
DOI: 10.1021/es5010472
Google Scholar
[19]
A. Gusev, E. Accakumov, Z. Medvedev, A. Masliy, Ceramic Electrodes Based on Magneli Phases of Titanium Oxides, Sci.Sinter. 39 (2007) 51-57.
DOI: 10.2298/sos0701051g
Google Scholar
[20]
M. Toyoda, T. Yano, B. Tryba, S. Mozia, T. Tsumura, M. Inagaki, Preparation of carbon-coated Magneli phases TinO2n−1 and their photocatalytic activity under visible light, Appl. Catal. B. 88 (2009) 160-164.
DOI: 10.1016/j.apcatb.2008.09.009
Google Scholar
[21]
S. Andersson, B. Collen, G. Kruuse, U. Kuylenstierna, A. Magnéli, H. Pestmalis, S. Asbrink H. Pestmalis, S. Åsbrink (1957) Phase analysis studies on the titanium–oxygen system, Acta Chem. Scand. 11 (1957) 1653-1657.
DOI: 10.3891/acta.chem.scand.11-1653
Google Scholar
[22]
C. Tang, D. Zhou, Q. Zhang. Synthesis and characterization of Magneli phases: Reduction of TiO2 in a decomposed NH3 atmosphere, Mater. Lett. 79 (2012) 42-44.
DOI: 10.1016/j.matlet.2012.03.095
Google Scholar
[23]
E. Fredriksson, J. Carlsson, Chemical Vapour Deposition of TiO and Ti2O3 from TiCl4/H2/CO2 Gas Mixtures, Surf. Coat. Technol. 73 (1995) 160-169.
DOI: 10.1016/0257-8972(94)02378-6
Google Scholar
[24]
B. Xu, D. Zhao, H. Sohn, Y. Mohassab, B. Yang, Y. Lan, J. Yang, Flash synthesis of Magnéli phase (TinO2n-1) nanoparticles by thermal plasma treatment of H2TiO3, Mater. Lett., 79 (2012) 42-44.
DOI: 10.1016/j.ceramint.2017.11.184
Google Scholar
[25]
A. Gusev, E. Avvakumov, O. Vinokurova, Synthesis of Ti4O7 magneli phase using mechanical activation,Sci. Sinter. 35 (2003) 141-145.
DOI: 10.2298/sos0303141g
Google Scholar
[26]
R. Zhu, Y. Liu, Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductivity and optical properties, J. Mater. Sci. Mater. Electron. 24 (2013) 4853-4856.
DOI: 10.1007/s10854-013-1487-5
Google Scholar
[27]
S. Rezan, G. Zhang, O. Ostrovski, Effect of Gas Atmosphere on Carbothermal Reduction and Nitridation of Titanium Dioxide, Metall. Mater. Trans. B 43 (2012) 73-81.
DOI: 10.1007/s11663-011-9574-6
Google Scholar
[28]
X. Li, Y. Liu, J. Ye, Investigation of fabrication of Ti4O7 by carbothermal reduction in argon atmosphere and vacuum, Mater. Sci. Mater. El. 27 (2016) 3683-3692.
DOI: 10.1007/s10854-015-4208-4
Google Scholar
[29]
Y. Wang, F. Li, B. Yan, T. Fan, M. Xu, H. Gong, Kinetic study on preparation of substoichiometric titanium oxide via carbothermal process, J. Therm. Anal. Calorim. 122 (2015) 635-644.
DOI: 10.1007/s10973-015-4743-5
Google Scholar
[30]
J. Ye, G. Wang, X. Li, Y. Liu, R. Zhu, Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering, J. Mater. Sci. Mater. El. 26 (2015) 4683-4690.
DOI: 10.1007/s10854-015-2838-1
Google Scholar
[31]
G. Wang, Y. Liu, J. Ye, W. Qiu, Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders, J. Alloys Compd. 704 (2017) 18-25.
DOI: 10.1016/j.jallcom.2017.02.022
Google Scholar
[32]
J. Smith, F. Walsh, R. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials, J. Appl. Electrochem. 28 (1998) 1021-1023.
Google Scholar
[33]
H. Wei, E. Rodriguez, A. Best, A. Hollenkamp, D. Chen, R. Caruso, Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti4O7 Microspheres for High-Performance Li-S Battery, Adv. Energy Mater. 7 (2016) 1601616.
DOI: 10.1002/aenm.201601616
Google Scholar
[34]
M. Umeda, K. Dokko, Y. Fujita, M. Mohamedi, I. Uchida, J. Selman, Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochim. Acta, 47 (2001) 885-890.
DOI: 10.1016/s0013-4686(01)00799-x
Google Scholar
[35]
Y. Yang, B. Qiao, X. Yang, L. Fang, C. Pan, W. Song, H. Hou, X. Ji, Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery, Adv. Funct. Mater. 24 (2014) 4349-4356.
DOI: 10.1002/adfm.201304263
Google Scholar