[1]
X.Y. Liu, S.J. Shi, Q.Q. Xiong, L. Li, Y.J. Zhang, H. Tang, C.D. Gu, X.L. Wang, J.P. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials, ACS Appl. Mater. Interfaces 5 (2013) 8790-8795.
DOI: 10.1021/am402681m
Google Scholar
[2]
S. Sun, S. Wang, S. Li, Y. Li, Y. Zhang, J. Chen, Z. Zhang, S. Fang, P. Wang, Asymmetric supercapacitors based on a NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density, J. Mater. Chem. A. 4 (2016) 18646-18653.
DOI: 10.1039/c6ta07746c
Google Scholar
[3]
S.H. Yue, H. Tong, L. Lu, W.W. Tang, W.L. Bai, F.Q. Jin, Q.W. Han, J.P. He, J. Liu, X.G. Zhang, Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors, J. Mater. Chem. A. 5 (2017) 689-698.
DOI: 10.1039/c6ta09128h
Google Scholar
[4]
G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy. 2 (2013) 213-234.
DOI: 10.1016/j.nanoen.2012.10.006
Google Scholar
[5]
D.Z. Yang, J.N. Shen, X.W. Yang. Research progress of graphene alkali supercapacitors, Energy Storage Science and Technology. 3 (2014) 1-8.
Google Scholar
[6]
T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162 (2015) A5185-A5189.
Google Scholar
[7]
Y.M. Sun, R.B. Sills, X.L. Hu, Z.W. Seh, X. Xiao, H.H. Xui, W. Luo, H.Y. Jin, Y. Xin, T.Q. Li, Z.L. Zhang, J. Zhou, W. Cai, Y.H. Huang, Y. Cui, A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices, Nano Lett. 15 (2015) 3899-3906.
DOI: 10.1021/acs.nanolett.5b00738
Google Scholar
[8]
X.W. Wang, F.X. Wang, L.Y. Wang, M.X. Li, Y.F. Wang, B.W. Chen, Y.S. Zhu, L.J. Fu, L.S. Zha, L.X. Zhang, Y.P. Wu, W. Huang, An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior, Adv. Mater. 28 (2016) 4904-4911.
DOI: 10.1002/adma.201505370
Google Scholar
[9]
Q.Y. Liao, N. Li, S.X. Jin, G.W. Yang, C.X. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene, ACS Nano. 9 (2015) 5310-5317.
DOI: 10.1021/acsnano.5b00821
Google Scholar
[10]
Z.K. Wei, X.Z. Hua, K Xiao. Electrochemical properties of four crystalline MnO2 supercapacitor electrode materials, J. Electrochem. 21 (2015) 393-398.
Google Scholar
[11]
K.F. Chen, Y.Y. Yang, X. Chen. Study on electrochemical energy storage performance of transition metal materials. Journal of Henan University(Natural Science). 44 (2014) 398-415.
Google Scholar
[12]
W.B. Fu, Y.L. Wang, W.H. Han, Z.M. Zhang, H.M. Zha, E.Q. Xie, Construction of hierarchical ZnCo2O4@NixCo2x(OH)(6x) core/shell nanowire arrays for high-performance supercapacitors, J. Mater. Chem. A. 4 (2016) 173-182.
DOI: 10.1039/c5ta07965a
Google Scholar
[13]
F. Xiao, S.X. Yang, Z.Y. Zhang, H.F. Liu, J.W. Xiao, L. Wan, J. Luo, S. Wang, Y.Q. Liu, Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor, Sci Rep. 5 (2015) 8.
DOI: 10.1038/srep09359
Google Scholar
[14]
C.M. Zhang, Y.L. Jiao, T.W. He, F.X. Ma, L.Z. Kou, T. Liao, S. Bottle, A.J. Du, Two-dimensional GeP3 as a high capacity electrode material for Li-ion batteries, Phys. Chem. Chem. Phys. 19 (2017) 25886-25890.
DOI: 10.1039/c7cp04758d
Google Scholar
[15]
L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties, Nat. Commun. 6 (2015) 8.
DOI: 10.1038/ncomms7694
Google Scholar
[16]
J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett. 14 (2014) 831-838.
DOI: 10.1021/nl404199v
Google Scholar
[17]
W.B. Fu, W.H. Han, H.M. Zha, J.F. Mei, Y.X. Li, Z.M. Zhang, E.Q. Xie, Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors, Phys. Chem. Chem. Phys. 18 (2016) 24471-24476.
DOI: 10.1039/c6cp02228f
Google Scholar
[18]
H.J. Tang, J.Y. Wang, H.J. Yin, H.J. Zhao, D. Wang, Z.Y. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes, Adv. Mater. 27 (2015) 1117-1123.
DOI: 10.1002/adma.201404622
Google Scholar
[19]
X.Y. Yu, L. Yu, B.H. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 5331-5335.
DOI: 10.1002/anie.201500267
Google Scholar
[20]
S.Z. Li, J. Wen, T. Chen, L.B. Xiong, J.B. Wang, G.J. Fang, In situ synthesis of 3D CoS nanoflake/Ni (OH)(2) nanosheet nanocomposite structure as a candidate supercapacitor electrode, Nano. tech. 27 (2016) 9 145401.
DOI: 10.1088/0957-4484/27/14/145401
Google Scholar
[21]
H. Hu, L. Han, M.Z. Yu, Z.Y. Wang, X.W. Lou, Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction, Energ. Environ. Sci. 9 (2016) 107-111.
DOI: 10.1039/c5ee02903a
Google Scholar
[22]
Y X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage, Adv. Energy Mater. 6 (2016) 14 1501333.
DOI: 10.1002/aenm.201501333
Google Scholar
[23]
H.Z. Wan, J. Liu, Y.J. Ruan, L. Lv, L. Peng, X. Ji, L. Miao, J.J. Jiang, Hierarchical configuration of NiCo2S4 nanotube@Ni-Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors, ACS Appl. Mater. Interfaces. 7 (2015) 15840-15847.
DOI: 10.1021/acsami.5b03042
Google Scholar
[24]
S.J. Peng, L.L. Li, C.C. Li, H.T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors, Chem. Commun. 49 (2013) 10178-10180.
DOI: 10.1039/c3cc46034g
Google Scholar
[25]
Z.H. Wu, D.E. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.I. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595-3602.
DOI: 10.1002/adfm.201001054
Google Scholar
[26]
M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, Z. Huang. Construction of a hierarchical NiCo2S4@ppy core shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor, ACS Appl. Mater & Inter. 8 (2016) 24525-24535.
DOI: 10.1021/acsami.6b05618
Google Scholar
[27]
S.C Byun, Y Jung , S Kim. Effect of reducing agent on preparation and electroactivity of MnO2/graphene composite electrode for capacitors, J Nanosci Nanotechnol. 18 (2018) 7128-7131.
DOI: 10.1166/jnn.2018.15484
Google Scholar
[28]
H S. Hou, X. Xu, M. Wang, Y. Xu, T. Lu, Y. Yao, L. Pan, Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors, J. Mater. Chem. A. 5 (2017) 19054-19061.
DOI: 10.1039/c7ta04720g
Google Scholar
[29]
W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors, Acs Nano. 8 (2014) 9531.
DOI: 10.1021/nn503814y
Google Scholar
[30]
D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors, Sci Rep. 6 (2016) 29788.
DOI: 10.1038/srep29788
Google Scholar
[31]
F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, J. Mater. Chem. A. 6 (2018) 5856-5861.
DOI: 10.1039/c8ta00835c
Google Scholar
[32]
Y.K. Niu, X. Jin, J. Zheng. Preparation and electrochemical properties of graphene/cobalt nickel double metal hydroxide composites, J. Inorg. Chem. 28 (2012) 1878-1884.
Google Scholar
[33]
J.J. Lin, S. Yan, P. Liu, X. Chang, L. Yao, H.L. Lin, D.L. Lu, S. Han, Facile synthesis of CoNi2S4/graphene nanocomposites as a high-performance electrode for supercapacitors, Res. Chem. Intermediat. 44 (2018) 4503-4518.
DOI: 10.1007/s11164-018-3400-6
Google Scholar
[34]
C.T. Chiu, D.H. Chen, One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors, Nano. tech. 29 (2018) 175602.
DOI: 10.1088/1361-6528/aaaff5
Google Scholar
[35]
Z. Tang, C.H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes, Adv. Funct. Mater. 22 (2012) 1272-1278.
DOI: 10.1002/adfm.201102796
Google Scholar
[36]
R.N. Chen, L. Liu, J.S. Zhou, L. Hou, F.M. Gao, High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density, J. Power Sources. 341 (2017) 75-82.
DOI: 10.1016/j.jpowsour.2016.11.108
Google Scholar
[37]
Y. Zhang, M. Park, H.Y. Kim, S.J. Park, Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density, J. Colloid Interface Sci. 500 (2017) 155-163.
DOI: 10.1016/j.jcis.2017.04.022
Google Scholar
[38]
F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, J. Mater. Chem. A. 6 (2018) 5856-5861.
DOI: 10.1039/c8ta00835c
Google Scholar
[39]
L.F. Shen, J. Wang, G.Y. Xu, H.S. Li, H. Dou, X.G. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors, Adv. Ener. Mater. 5 (2015) 7.
DOI: 10.1002/aenm.201400977
Google Scholar