Preparation and Capacitance Properties of Nickel-Cobalt Sulfide/Graphene Composites

Article Preview

Abstract:

In order to explore the supercapacitor electrode material with high energy density, a composite material that nickel-cobalt sulfide loaded in graphene (NiCo2S4@rGO) with core-shell structure was successfully prepared by hydrothermal, room temperature vulcanization and annealing. The core-shell structure of the material greatly increased the contact area between the material and the electrolyte and improved the electrochemical performance. In addition, the energy density has been significantly improved. NiCo2S4@rGO was characterized by field emission scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectrometer. The electrochemical properties of the material were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results show that the capacitance can reach 1100 F/g at the current density of 0.5 A/g. Furthermore, the NiCo2S4@rGO as positive electrode and reduced graphene oxide (rGO) as negative electrode were assembled into an asymmetric supercapacitor (ASC). The device exhibits a high energy density of 74.78 Wh/Kg at a power density of 400 W/Kg, as well as excellent cycling stability of 88.9% after 3 000 cycles, which reflects the excellent electrochemical performance of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-45

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Y. Liu, S.J. Shi, Q.Q. Xiong, L. Li, Y.J. Zhang, H. Tang, C.D. Gu, X.L. Wang, J.P. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials, ACS Appl. Mater. Interfaces 5 (2013) 8790-8795.

DOI: 10.1021/am402681m

Google Scholar

[2] S. Sun, S. Wang, S. Li, Y. Li, Y. Zhang, J. Chen, Z. Zhang, S. Fang, P. Wang, Asymmetric supercapacitors based on a NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density, J. Mater. Chem. A. 4 (2016) 18646-18653.

DOI: 10.1039/c6ta07746c

Google Scholar

[3] S.H. Yue, H. Tong, L. Lu, W.W. Tang, W.L. Bai, F.Q. Jin, Q.W. Han, J.P. He, J. Liu, X.G. Zhang, Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors, J. Mater. Chem. A. 5 (2017) 689-698.

DOI: 10.1039/c6ta09128h

Google Scholar

[4] G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy. 2 (2013) 213-234.

DOI: 10.1016/j.nanoen.2012.10.006

Google Scholar

[5] D.Z. Yang, J.N. Shen, X.W. Yang. Research progress of graphene alkali supercapacitors, Energy Storage Science and Technology. 3 (2014) 1-8.

Google Scholar

[6] T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162 (2015) A5185-A5189.

Google Scholar

[7] Y.M. Sun, R.B. Sills, X.L. Hu, Z.W. Seh, X. Xiao, H.H. Xui, W. Luo, H.Y. Jin, Y. Xin, T.Q. Li, Z.L. Zhang, J. Zhou, W. Cai, Y.H. Huang, Y. Cui, A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices, Nano Lett. 15 (2015) 3899-3906.

DOI: 10.1021/acs.nanolett.5b00738

Google Scholar

[8] X.W. Wang, F.X. Wang, L.Y. Wang, M.X. Li, Y.F. Wang, B.W. Chen, Y.S. Zhu, L.J. Fu, L.S. Zha, L.X. Zhang, Y.P. Wu, W. Huang, An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior, Adv. Mater. 28 (2016) 4904-4911.

DOI: 10.1002/adma.201505370

Google Scholar

[9] Q.Y. Liao, N. Li, S.X. Jin, G.W. Yang, C.X. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene, ACS Nano. 9 (2015) 5310-5317.

DOI: 10.1021/acsnano.5b00821

Google Scholar

[10] Z.K. Wei, X.Z. Hua, K Xiao. Electrochemical properties of four crystalline MnO2 supercapacitor electrode materials, J. Electrochem. 21 (2015) 393-398.

Google Scholar

[11] K.F. Chen, Y.Y. Yang, X. Chen. Study on electrochemical energy storage performance of transition metal materials. Journal of Henan University(Natural Science). 44 (2014) 398-415.

Google Scholar

[12] W.B. Fu, Y.L. Wang, W.H. Han, Z.M. Zhang, H.M. Zha, E.Q. Xie, Construction of hierarchical ZnCo2O4@NixCo2x(OH)(6x) core/shell nanowire arrays for high-performance supercapacitors, J. Mater. Chem. A. 4 (2016) 173-182.

DOI: 10.1039/c5ta07965a

Google Scholar

[13] F. Xiao, S.X. Yang, Z.Y. Zhang, H.F. Liu, J.W. Xiao, L. Wan, J. Luo, S. Wang, Y.Q. Liu, Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor, Sci Rep. 5 (2015) 8.

DOI: 10.1038/srep09359

Google Scholar

[14] C.M. Zhang, Y.L. Jiao, T.W. He, F.X. Ma, L.Z. Kou, T. Liao, S. Bottle, A.J. Du, Two-dimensional GeP3 as a high capacity electrode material for Li-ion batteries, Phys. Chem. Chem. Phys. 19 (2017) 25886-25890.

DOI: 10.1039/c7cp04758d

Google Scholar

[15] L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties, Nat. Commun. 6 (2015) 8.

DOI: 10.1038/ncomms7694

Google Scholar

[16] J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett. 14 (2014) 831-838.

DOI: 10.1021/nl404199v

Google Scholar

[17] W.B. Fu, W.H. Han, H.M. Zha, J.F. Mei, Y.X. Li, Z.M. Zhang, E.Q. Xie, Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors, Phys. Chem. Chem. Phys. 18 (2016) 24471-24476.

DOI: 10.1039/c6cp02228f

Google Scholar

[18] H.J. Tang, J.Y. Wang, H.J. Yin, H.J. Zhao, D. Wang, Z.Y. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes, Adv. Mater. 27 (2015) 1117-1123.

DOI: 10.1002/adma.201404622

Google Scholar

[19] X.Y. Yu, L. Yu, B.H. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 5331-5335.

DOI: 10.1002/anie.201500267

Google Scholar

[20] S.Z. Li, J. Wen, T. Chen, L.B. Xiong, J.B. Wang, G.J. Fang, In situ synthesis of 3D CoS nanoflake/Ni (OH)(2) nanosheet nanocomposite structure as a candidate supercapacitor electrode, Nano. tech. 27 (2016) 9 145401.

DOI: 10.1088/0957-4484/27/14/145401

Google Scholar

[21] H. Hu, L. Han, M.Z. Yu, Z.Y. Wang, X.W. Lou, Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction, Energ. Environ. Sci. 9 (2016) 107-111.

DOI: 10.1039/c5ee02903a

Google Scholar

[22] Y X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage, Adv. Energy Mater. 6 (2016) 14 1501333.

DOI: 10.1002/aenm.201501333

Google Scholar

[23] H.Z. Wan, J. Liu, Y.J. Ruan, L. Lv, L. Peng, X. Ji, L. Miao, J.J. Jiang, Hierarchical configuration of NiCo2S4 nanotube@Ni-Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors, ACS Appl. Mater. Interfaces. 7 (2015) 15840-15847.

DOI: 10.1021/acsami.5b03042

Google Scholar

[24] S.J. Peng, L.L. Li, C.C. Li, H.T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors, Chem. Commun. 49 (2013) 10178-10180.

DOI: 10.1039/c3cc46034g

Google Scholar

[25] Z.H. Wu, D.E. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.I. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595-3602.

DOI: 10.1002/adfm.201001054

Google Scholar

[26] M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, Z. Huang. Construction of a hierarchical NiCo2S4@ppy core shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor, ACS Appl. Mater & Inter. 8 (2016) 24525-24535.

DOI: 10.1021/acsami.6b05618

Google Scholar

[27] S.C Byun, Y Jung , S Kim. Effect of reducing agent on preparation and electroactivity of MnO2/graphene composite electrode for capacitors, J Nanosci Nanotechnol. 18 (2018) 7128-7131.

DOI: 10.1166/jnn.2018.15484

Google Scholar

[28] H S. Hou, X. Xu, M. Wang, Y. Xu, T. Lu, Y. Yao, L. Pan, Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors, J. Mater. Chem. A. 5 (2017) 19054-19061.

DOI: 10.1039/c7ta04720g

Google Scholar

[29] W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors, Acs Nano. 8 (2014) 9531.

DOI: 10.1021/nn503814y

Google Scholar

[30] D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors, Sci Rep. 6 (2016) 29788.

DOI: 10.1038/srep29788

Google Scholar

[31] F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, J. Mater. Chem. A. 6 (2018) 5856-5861.

DOI: 10.1039/c8ta00835c

Google Scholar

[32] Y.K. Niu, X. Jin, J. Zheng. Preparation and electrochemical properties of graphene/cobalt nickel double metal hydroxide composites, J. Inorg. Chem. 28 (2012) 1878-1884.

Google Scholar

[33] J.J. Lin, S. Yan, P. Liu, X. Chang, L. Yao, H.L. Lin, D.L. Lu, S. Han, Facile synthesis of CoNi2S4/graphene nanocomposites as a high-performance electrode for supercapacitors, Res. Chem. Intermediat. 44 (2018) 4503-4518.

DOI: 10.1007/s11164-018-3400-6

Google Scholar

[34] C.T. Chiu, D.H. Chen, One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors, Nano. tech. 29 (2018) 175602.

DOI: 10.1088/1361-6528/aaaff5

Google Scholar

[35] Z. Tang, C.H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes, Adv. Funct. Mater. 22 (2012) 1272-1278.

DOI: 10.1002/adfm.201102796

Google Scholar

[36] R.N. Chen, L. Liu, J.S. Zhou, L. Hou, F.M. Gao, High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density, J. Power Sources. 341 (2017) 75-82.

DOI: 10.1016/j.jpowsour.2016.11.108

Google Scholar

[37] Y. Zhang, M. Park, H.Y. Kim, S.J. Park, Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density, J. Colloid Interface Sci. 500 (2017) 155-163.

DOI: 10.1016/j.jcis.2017.04.022

Google Scholar

[38] F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, J. Mater. Chem. A. 6 (2018) 5856-5861.

DOI: 10.1039/c8ta00835c

Google Scholar

[39] L.F. Shen, J. Wang, G.Y. Xu, H.S. Li, H. Dou, X.G. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors, Adv. Ener. Mater. 5 (2015) 7.

DOI: 10.1002/aenm.201400977

Google Scholar