Carbon Nanosheet Frameworks Derived from Pine Cone Shells as Sodium-Ion Battery Anodes

Article Preview

Abstract:

As a kind of green, environment-friendly and sustainable carbon material, biomass carbon has simple processing technology and undoubtedly been the best candidate for industrialization. Different activation processes can be used to change the internal microstructure of carbons, and design pores that facilitate ions transport and electrons conduction, thereby achieving the ultimate goal of improving electrochemical performance. Herein, we select the same activator (KOH) and activation time (3 h) but change the activation temperature (300 °C, 600 °C, 800 °C) to obtain biomass-derived carbon with the different micromorphology, pores structure and heteroatoms content. Rather, We choose ether-based electrolyte, due to its highly reversible graphite co-intercalation reaction, the problem of extremely low electrochemical activity of graphite in ester electrolytes is avoided. Results indicate, the sample PCS-600 exhibites sheet structure with specific surface area of 38.3 m2/g and large average pore width of 2.77 nm, which providing sufficient conditions for ions transport. PCS-600 has 1.05 at% N and 5.75 at% O heteroatoms, which providing additional pseudocapacitance. In addition, the electrochemical performance of PCS-600 is optimal, at a current density of 0.1 A/g, its specific capacity is 198.6 mA h/g, maintain at ~95% after 100 cycles, with coulomb efficiency ~100%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Doeff, Y.P. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical Insertion of Sodium into Carbon, J. Electrochem. Soc. 140 (1993) 169-170.

DOI: 10.1149/1.2221153

Google Scholar

[2] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, G.J. Carretero, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884-5901.

DOI: 10.1039/c2ee02781j

Google Scholar

[3] L. Ji, M. Gu, Y. Shao, X. Li, Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage, Adv. Mater. 26 (2014) 2901-2908.

DOI: 10.1002/adma.201304962

Google Scholar

[4] Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K.L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio, T. Zhu, In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers, Nano Lett. 14 (2014) 3445-3452.

DOI: 10.1021/nl500970a

Google Scholar

[5] F. Hu, J. Wang, S. Hu, L. Li, W. Shao, J. Qiu, Z. Lei, W. Deng, X. Jian, Engineered fabrication of hierarchical frameworks with tuned pore structure and N, O-co-doping for high-performance supercapacitors, ACS Appl. Mater. Interfaces. 9 (2017) 31940-31949.

DOI: 10.1021/acsami.7b09801

Google Scholar

[6] C. Delmas, J.J. Braconnier, C. Fouassier, P. Hagenmuller, Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ion. 3 (1981) 165-169.

DOI: 10.1016/0167-2738(81)90076-x

Google Scholar

[7] H.G. Jung, M.W. Jang, J. Hassoun, Y.K. Sun, B. Scrosati, A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery, Nat. Commun. 2 (2011) 516.

DOI: 10.1038/ncomms1527

Google Scholar

[8] J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov, D. Mitlin, Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor, Nano Energy. 23 (2016) 129-137.

DOI: 10.1016/j.nanoen.2016.03.014

Google Scholar

[9] M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis, J.R. Jokisaari, C. Liu, B. Narayanan, M. Gerard, P. Yasaei, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature. 555 (2018) 502-506.

DOI: 10.1038/nature25984

Google Scholar

[10] H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries, Adv. Sci. 4 (2016) 1600243.

DOI: 10.1002/advs.201600243

Google Scholar

[11] Y. Yang, W. Shi, R. Zhang, C. Luan, Q. Zeng, C. Wang, S. Li, Z. Huang, H. Liao, X, Ji, Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and its Energy Storage Properties, Electrochim. Acta. 204 (2016) 100-107.

DOI: 10.1016/j.electacta.2016.04.063

Google Scholar

[12] H. Xu, J. Chen, D. Wang, Z. Sun, P. Zhang, Y. Zhang, X. Guo, Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage, Carbon. 124 (2017) 565-575.

DOI: 10.1016/j.carbon.2017.09.016

Google Scholar

[13] Y. Zhu, X. Han, Y. Xu, Y. Liu, C. Wang, Toward advanced sodium-ion batteries: a wheelinspired yolk–shell design for large-volumechange anode materials, J. Mater. Chem. A. 6 (2018) 13153-13163.

DOI: 10.1039/c8ta03772h

Google Scholar

[14] H. Xu, J. Chen, D. Wang, Z. Sun, P. Zhang, Y. Zhang, X. Guo, Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review, J. Power Sources. 274 (2015) 869-884.

DOI: 10.1016/j.jpowsour.2014.10.008

Google Scholar

[15] D.A. Stevens, J.R. Dahn, High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries, J. Electrochem. Soc. 147 (2000) 1271-1273.

DOI: 10.1149/1.1393348

Google Scholar

[16] S. Kim, C.B. Park, Bio-Inspired Synthesis of Minerals for Energy, Environment, and Medicinal Applications, Adv. Funct. Mater. 23 (2013) 10-25.

DOI: 10.1002/adfm.201201994

Google Scholar

[17] H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life, Adv. Mater. 27 (2015) 7861-7866.

DOI: 10.1002/adma.201503816

Google Scholar

[18] E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels, ACS Nano. 8 (2015) 7115-29.

DOI: 10.1021/nn502045y

Google Scholar

[19] F. Hu, J. Wang, S. Hu, L. Li, G. Wang, J. Qiu, X. Jian, Inherent N, O-containing carbon frameworks as electrode materials for high-performance supercapacitors, Nanoscale. 8 (2016) 16323-16331.

DOI: 10.1039/c6nr05146d

Google Scholar

[20] H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy – power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes, J. Mater. Chem. A. 4 (2016) 5149-5158.

DOI: 10.1039/c6ta01392a

Google Scholar

[21] J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors, Nano Energy. 25 (2016) 193-202.

DOI: 10.1016/j.nanoen.2016.04.037

Google Scholar

[22] C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon. 45 (2007) 2511-2518.

DOI: 10.1016/j.carbon.2007.08.024

Google Scholar

[23] J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D.M. Alireza, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors, Energy Environ. Sci. 8 (2015) 941-955.

DOI: 10.1039/c4ee02986k

Google Scholar

[24] Y.L. Cheah, V. Aravindan, S. Madhavi, Electrochemical Lithium Insertion Behavior of Combustion Synthesized V2O5 Cathodes for Lithium-Ion Batteries, J. Electrochem. Soc. 159 (2012) A273-A280.

DOI: 10.1149/2.071203jes

Google Scholar

[25] W.J. Cao, J.P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes, J. Power Sources. 213 (2012) 180-185.

DOI: 10.1016/j.jpowsour.2012.04.033

Google Scholar