[1]
Bubnova O, Khan Z U, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene) [J]. Nature materials, 2011, 10(6): 429.
DOI: 10.1038/nmat3012
Google Scholar
[2]
Sun G, Chen G, Liu J, et al. A Facile Gemini Surfactant-Improved Dispersion of Carbon Nanotubes in Polystyrene [J]. Polymer, 2009, 50:5787.
DOI: 10.1016/j.polymer.2009.10.007
Google Scholar
[3]
Sun G, Chen G, Liu Z, et al. Preparation, Crystallization, Electrical Conductivity and Thermal Stability of Syndiotactic Polystyrene/Carbon Nanotube Composites [J]. Carbon, 2010, 48:1434.
DOI: 10.1016/j.carbon.2009.12.037
Google Scholar
[4]
Silverman M S. High-pressure (70-kbar) synthesis of new crystalline lead dichalcogenides[J]. Inorganic Chemistry, 1966, 5(11): (2067).
DOI: 10.1021/ic50045a056
Google Scholar
[5]
Rowe D M. Conversion Efficiency and Figure-of-Merit[M]. CRC Handbook of Thermoelectrics. CRC press, (1995).
DOI: 10.1201/9781420049718.ch3
Google Scholar
[6]
Xiao F, Hangarter C, Yoo B, et al. Recent progress in electrodeposition of thermoelectric thin films and nanostructures[J]. Electrochimica Acta, 2008, 53(28): 8103.
DOI: 10.1016/j.electacta.2008.06.015
Google Scholar
[7]
Bremholm M, Hor Y S, Cava R J. Pressure stabilized Se–Se dimer formation in PbSe2[J]. Solid State Sciences, 2011, 13(1): 38.
DOI: 10.1016/j.solidstatesciences.2010.10.003
Google Scholar
[8]
Hu W C, Liu Y, Li D J, et al. Structural, anisotropic elastic and electronic properties of Sr–Zn binary system intermetallic compounds: A first-principles study[J]. Computational Materials Science, 2015, 99: 381.
DOI: 10.1016/j.commatsci.2014.12.034
Google Scholar
[9]
Li C M, Zeng S M, Chen Z Q, et al. First-principles calculations of elastic and thermodynamic properties of the four main intermetallic phases in Al–Zn–Mg–Cu alloys[J]. Computational Materials Science, 2014, 93: 210.
DOI: 10.1016/j.commatsci.2014.06.031
Google Scholar
[10]
Liu Y, Hu W C, Li D, et al. First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure[J]. Intermetallics, 2012, 31: 257.
DOI: 10.1016/j.intermet.2012.07.017
Google Scholar
[11]
Zhou D, Liu J, Xu S, et al. First-principles investigation of the binary intermetallics in Mg–Al–Sr alloy: Stability, elastic properties and electronic structure[J]. Computational Materials Science, 2014, 86: 24.
DOI: 10.1016/j.commatsci.2014.01.007
Google Scholar
[12]
Hu W C, Liu Y, Li D J, et al. Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc alloys from first-principles calculations[J]. Physica B: Condensed Matter, 2013, 427: 85.
DOI: 10.1016/j.physb.2013.06.038
Google Scholar
[13]
Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review B, 1964, 136, 864.
Google Scholar
[14]
Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[15]
J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77:3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[16]
Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566.
DOI: 10.1103/physrevlett.45.566
Google Scholar
[17]
J Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[18]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical review B, 1976, 13(12): 5188.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[19]
Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24): 9768.
DOI: 10.1021/j100203a036
Google Scholar
[20]
Feng J, Xiao B, Zhou R, et al. Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln= La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure[J]. Acta Materialia, 2012, 60(8): 3380.
DOI: 10.1016/j.actamat.2012.03.004
Google Scholar
[21]
Blanco M A, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Computer Physics Communications, 2004, 158(1): 57.
DOI: 10.1016/j.comphy.2003.12.001
Google Scholar
[22]
Tanaka K, Koiwa M. Single-crystal elastic constants of intermetallic compounds[J]. Intermetallics, 1996, 4: 29.
DOI: 10.1016/0966-9795(96)00014-3
Google Scholar
[23]
Fu J, Lin W, Chen Z, et al. Electronic and elastic properties of CaMg2 alloy phase under various pressures by Density Functional Theory[J]. MATEC Web of Conferences-2016CBNCM, 2017, 88:03003.
DOI: 10.1051/matecconf/20178803003
Google Scholar
[24]
Fu J, Lin W, Chen Z. First-principles calculations of CaMg2 Alloy Phase to predict its Electronic and Elastic Properties[J]. International Journal of Advanced Materials and Production, 2016,1(1):62.
Google Scholar
[25]
Feng L, Wang Z, Liu Z. First-principles calculations on mechanical and elastic properties of 2H-and 3R-WS2 under pressure[J]. Solid State Communications, 2014, 187: 43.
DOI: 10.1016/j.ssc.2014.02.012
Google Scholar
[26]
Wu M M, Wen L, Tang B Y, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy[J]. Journal of Alloys and Compounds, 2010, 506(1): 412.
DOI: 10.1016/j.jallcom.2010.07.018
Google Scholar
[27]
Nye J F. Physical Properties of Crystals, Oxford University Press, London, (1985).
Google Scholar
[28]
Raabe D. Computational Materials Science: The Simulation of Materials Microstructures and Properties, Wiley-VCH, Weinheim,(1998).
Google Scholar
[29]
Fu J, Fabrice B, Siham K-B. First-principles calculations of typical anisotropic cubic and hexagonal structures and homogenized moduli estimation based on the Y- parameter. Application to CaO, MgO, CH and Calcite CaCO3[J]. Journal of Physics and Chemistry of Solids, 2017, 101:74.
DOI: 10.1016/j.jpcs.2016.10.010
Google Scholar
[30]
Pugh S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823.
DOI: 10.1080/14786440808520496
Google Scholar
[31]
Chen X J, Zeng M X, Wang R N, et al. First-principles study of (Ti5− xMgx) Si3 phases with the hexagonal D88 structure: Elastic properties and electronic structure[J]. Computational Materials Science, 2012, 54: 287.
DOI: 10.1016/j.commatsci.2011.10.042
Google Scholar
[32]
Xiao B, Feng J, Zhou C T, et al. Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides[J]. Journal of Applied Physics, 2011, 109(2): 023507.
DOI: 10.1063/1.3532038
Google Scholar
[33]
Ozisik H B, Colakoglu K, Deligoz E. First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure[J]. Computational Materials Science, 2012, 51(1): 83.
DOI: 10.1016/j.commatsci.2011.07.043
Google Scholar