Development of Cutting Forces and Surface Roughness Prediction Models for Turning a CoCrWNi Alloy

Article Preview

Abstract:

This paper presents a research conducted in order to identify the cutting parameters effect on turning cutting forces and on the resulted machined surface quality for a CoCrWNi alloy. This alloy is a biomaterial used in medical applications for implants manufacturing. The main objective of the research is the development of prediction models for the turning cutting forces and the Ra roughness parameter for dry longitudinal turning with TiAlN PVD coated inserts. In order to achieve this objective, thirteen processing experiments were carried out, during which the cutting forces and roughness parameters were registered. The research results consist of the prediction models for cutting forces and Ra roughness parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-155

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Park, Y.K. Kim, The Biomedical Engineering Handbook, 2nd Edition, Vol. 1, Springer-Verlag, Germany, (2000).

Google Scholar

[2] S.W. Teoh, Engineering materials for biomedical applications, World Scientific Publishing, Singapore, (2004).

Google Scholar

[3] J. Park, R.S. Lakes, Biomaterials - An introduction, Springer-Verlag, New York, (2007).

Google Scholar

[4] M.J. Jackson, T. Novakov, M.B. da Silva, Machining with Nanomaterials, Springer International Publishing, Switzerland, (2015).

Google Scholar

[5] Y. Tsustumi, H. Doi, N. Nomura, M. Ashida, P. Chen, A.K. Awasaki, T. Hanawa, Surface Composition and Corrosion Resistance of Co-Cr Alloys Containing High Chromium, Mater. Tran. 57 (2016) 2033-2040.

DOI: 10.2320/matertrans.mi201514

Google Scholar

[6] H. A. Zaman, S. Sharif, M. H. Idris, A. Kamarudin, Metallic Biomaterials for Medical Implant Applications A Review, Appl. Mech. Mater. 735 (2015) 19-25.

DOI: 10.4028/www.scientific.net/amm.735.19

Google Scholar

[7] H.A. Zaman, S. Sharif, D-W. Kim, M.H. Idris, M.A. Suhaimi, Z. Tumurkhuyag, Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys - A Review, Procedia Manuf. 11 (2017) 563-570.

DOI: 10.1016/j.promfg.2017.07.150

Google Scholar

[8] S. Bruschi, A. Ghiotti, A. Bordin, Effect of the Process Parameters on the Machinability Characteristics of a CoCrMo Alloy, Key Eng. Mater. 554-557 (2013) 1976-1983.

DOI: 10.4028/www.scientific.net/kem.554-557.1976

Google Scholar

[9] A. Bordin, A. Ghiotti, S. Bruschi, L. Facchini, F. Bucciotti, Machinability Characteristics of Wrought and EBM CoCrMo Alloys, Procedia CIRP 14 (2014) 89-94.

DOI: 10.1016/j.procir.2014.03.082

Google Scholar

[10] A. M. Khorasani, I. Gibson, M. Goldberg, J. Nomani, G. Littlefair, Machinability of Metallic and Ceramic Biomaterials A review, Sci. of Adv. Mat. 8 (2016) 1491-1511.

DOI: 10.1166/sam.2016.2783

Google Scholar

[11] K. Ueki, K. Ueda, T. Narushima, Precipitate Phases and Mechanical Properties of Heat-Treated ASTM F 90 Co-Cr-W-Ni Alloy, Key Eng. Mater. 616 (2014) 258-262.

DOI: 10.4028/www.scientific.net/kem.616.258

Google Scholar

[12] K. Ueki, K. Ueda, T. Narushima, Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application, Metall. Mater. Trans. A 47-6 (2016) 2773-2782.

DOI: 10.1007/s11661-016-3488-5

Google Scholar

[13] V.A. Kumar, R. K. Gupta, S.V.S.N. Murty, A. D. Prasad, Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy, J. Alloys Compd. 676 (2016) 527-541.

DOI: 10.1016/j.jallcom.2016.03.186

Google Scholar

[14] K. Ueki, K. Ueda, M. Nakai, T. Nakano, T. Narushima, Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K, Metall. Mater. Trans. A 49-6 (2018) 2393-2404.

DOI: 10.1007/s11661-018-4597-0

Google Scholar

[15] E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, John Wiley & Sons, (2003).

Google Scholar

[16] N. E. Qehaja, A. H. Salihu, H. M. Zeqiri, H. Osmani, F. Zeqiri, Machinability of metals, methods and practical application, Annals of DAAAM 23 (2012) 29-32.

DOI: 10.2507/23rd.daaam.proceedings.007

Google Scholar

[17] A.B. Novaes, S.L.S. Souza, R.R.M. Barros, K.K.Y. Pereira, G. Iezzi, A. Piattelli, Influence of implant surfaces on osseointegration, Braz. Dent. J. 21 (2010) 471-481.

DOI: 10.1590/s0103-64402010000600001

Google Scholar

[18] G. Yingfei, P. Munoz de Escalona, A. Galloway, Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment, J. of Materi. Eng. and Perform. 26 (2017) 312-326.

DOI: 10.1007/s11665-016-2438-0

Google Scholar

[19] A. Wennerberg, The role of surface roughness for implant incorporation in bone, Cells and Materials 9 (1999) 1-19.

Google Scholar

[20] A.A. Kumar, P. Jignesh, K. D. Ashish, K. P. Udit, Cutting Parameters Effects On Cutting Force and Surface Roughness In Hard Turning Of AISI 52100 Steel With CBN Tool, IJRASET 3 (2015) 364-371.

Google Scholar

[21] V.S. Sharma, S. Dhiman, R. Sehgal, S. K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks, J. Intell. Manuf. 19 (2008) 473-483.

DOI: 10.1007/s10845-008-0097-1

Google Scholar

[22] J.S. Jadhav, B.R. Jadhav, Experimental study of Effect of Cutting Parameters on Cutting Force in Turning Process, IJIRAE 1 (2014) 240-248.

Google Scholar

[23] C. Anghelache, M. G. R. Pagliacci, L. Prodan, Model de analiză macroeconomică bazat pe funcţia de regresie, Rev. Rom. de Stat. 1 (2013) 5-17.

Google Scholar