Comparative Studies Regarding the Synthesis and Characterization of Cellulose Based-Polymer Assemblies for Fuel Cell Applications

Article Preview

Abstract:

The aim of these comparative studies consists of synthesis and characterization of membrane assemblies from cellulose acetate (CelAc) and acrylic acid (AA), using as dopant in-situ generated pyrrole–aniline (Py–AN) copolymer intended for use in fuel cells fabrication. The synthesis was conducted through free radical polymerization in a semi-homogeneous system and the casting method was used to form the solid polymer membranes. In selecting the optimal compositional parameters, the influence of the molecular size of the majority matrix component was also observed. These membrane assemblies were studied using FT-IR spectroscopy, UV-Vis spectroscopy, and X-Ray diffraction analysis which highlighted the structure–composition dependence. With the electrochemical impedance spectroscopy the ionic conductivity of the membrane was determined, in order to evaluate the PEM fuel cell performance. In case of thicker membranes, there is an increase in ionic conductivity values over those of lower thickness, which is due to short-order structural order. Also, a superunitary Py:AN is more favorable to conductivity increase than a less than one ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

475-482

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Haynes, J. Power Sources 92 (2001) 199-203.

Google Scholar

[2] S.E. Wright, J. Renew. Energy 28 (2004) 179-195.

Google Scholar

[3] I. Maior, A. Cojocaru, Principles and Applications of Conversion and Electrochemical Storage of Energy, Electra Publishing House, Bucharest, (2011).

Google Scholar

[4] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research, Elsevier, USA, (2010).

DOI: 10.1016/j.apenergy.2010.09.030

Google Scholar

[5] F. Croce, G.B. Appetecchi, L. Perci, S. Scrosati, Natur 394 (1998) 456–461.

Google Scholar

[6] J.E. Weston, B.C.H. Steele, Solid State Ionics 7 (1982) 75–82.

Google Scholar

[7] Y. Chang, Y. Qin, Y. Yin, J. Zhang, X. Li, Appl. Energy 230 (2018) 643–662.

Google Scholar

[8] J.K. Deuk, J.J. Min, Y.N. Song, J. Ind. Eng. Chem. 21 (2015) 36-52.

Google Scholar

[9] Q.X. Wu, T.S. Zhao, R. Chen, L. An, Appl. Energy 106 (2013) 301-306.

Google Scholar

[10] I.L. Alsvik, K.R. Zodrow, M. Elimelech, M.B. Hägg, Desalination 312 (2013) 2-9.

Google Scholar

[11] N. Gospodinova, L. Terlemezyan, Prog. Polym. Sci 23 (1989) 1443-1484.

Google Scholar

[12] Y. Cao, A. Andreatta, A.J. Heeger, P. Smith, Polymer 30 (1989) 2305-2311.

Google Scholar

[13] D.K. Moon, A.B. Padias, H.K. Hall, T. Huntoon, P.D. Calvert, Macromolecules 28 (1995) 6205-6210.

Google Scholar

[14] A.G. MacDiarmid, A.J. Epstein, Synth. Met. 65 (1994) 103-116.

Google Scholar

[15] S.A. Chen, H.T. Lee, Macromolecules 28 (1995) 2858-2866.

Google Scholar

[16] Y. Cao, P. Smith, A.J. Heeger, Synth. Met. 32 (1989) 263-281.

Google Scholar

[17] H. Tsutsumi, S. Fukuzawa, M. Ishikawa, M, Morita, Y. Matsuda, J. Electrochem. Soc. 142 (1995) 168-170.

Google Scholar

[18] F. Croce, R. Curini, A. Martinelli, F. Ronci, B. Scrosati, R. Caminiti, J. Phys. Chem. 103 (1999) 10632–10639.

DOI: 10.1021/jp992307u

Google Scholar

[19] G.M. Wa, S.J. Lin, C.C. Yang, J. Membr. Sci. 275 (2006) 127-133.

Google Scholar

[20] M. Kamran, H. Ullah, A.A. Shah, S. Bilal, A.A. Tahir, K. Ayub, Polymer 72 (2015) 30-39.

Google Scholar

[21] P. Choi, N.H. Jalani, R. Datta, J. Electrochem. Soc. 152 (2005) 123-130.

Google Scholar

[22] A.M. Albu, I. Maior, C.A. Nicolae, F.L. Bocăneală, Electrochim. Acta 211 (2016) 911–917.

Google Scholar

[23] I. Maior, A.M. Albu, R. Gabor, Appl. Mechanics and Mat. 760 Advanced Technologies in Designing and Progressive Development of Manufacturing Systems, (2015) 245 – 250.

Google Scholar

[24] Z. Ping, J. Chem. Soc. Faraday Trans. 92 (1996) 3063-3067.

Google Scholar

[25] M. Trchova, I. Sedenkova, J. Stejskal, Synth. Met. 154 (2005) 1-4.

Google Scholar

[26] J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74 (2002) 857-867.

Google Scholar

[27] S. Quillard, G. Louarn, J.P. Buisson, M. Boyer, M. Lapkowski, A. Pron, et al., Synth. Met. 84 (1997) 805-806.

DOI: 10.1016/s0379-6779(96)04155-0

Google Scholar

[28] Y. Dai, Y. Wang, S.G. Greenbaum, S.A. Bajue, D. Golodnitsky, G. Ardel, et al., Electrochim. Acta 43 (1998) 1557–1563.

Google Scholar

[29] X. Xu, Y-Q Yang, Y-Y Xing, J-F Yang, S-F Wang, Carbohydr Polym. 98 (2013) 1573-1577.

Google Scholar

[30] T.D.O. Gadim, F.J.A. Loureiro, C. Vilela, N. Rosero-Navarro, A.J.D. Silvestre, C.S.R. Freire, F.M.L. Figueiredo, Electrochim. Acta 233 (2017) 52–61.

DOI: 10.1016/j.electacta.2017.02.145

Google Scholar

[31] W. Vermerris, A. Abril, Curr. Opin. Biotechnol. 32 (2015) 104-112.

Google Scholar

[32] F. Colò, F. Bella, J.R. Nair, M. Destro, C. Gerbaldi, Electrochim. Acta 174 (2015) 185-190.

DOI: 10.1016/j.electacta.2015.05.178

Google Scholar

[33] D.J. Kim, M.J. Jo, S.Y. Nam, J. Ind. and Eng. Chem. 21 (2015) 36-52.

Google Scholar

[34] N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, React. Funct. Polym. 86 (2015) 248-258.

Google Scholar