Removal of Trichloroethylene by Corona Radical Injection

Article Preview

Abstract:

The removal of trichloroethylene (TCE) by corona discharge plasma was investigated. The influences of initial concentration, gas flow rate, injection of water vapor and ozone (O3) on removal efficiency were discussed. The results show that removal efficiency reduces with the initial concentration and gas flow rate increasing. A proper quantity of water vapor injection can improve the removal efficiency, but which is not always increased, due to the electronegative characteristic of water molecule. The maximum removal efficiency of 90.7% can be obtained in wet air flow with relative humidity of 70.6%. The removal efficiency increases obviously with O3 injection. The decomposition products are 2,2-Dichloroacetyl chloride (CHCl2COCl), carbonyl chloride (COCl2), hydrogen chloride (HCl) and carbon dioxide (CO2), based on which the decomposition mechanism is discussed. The oxygen chain reaction is the primary decomposition mechanism, and high energy electrons and active oxygen species play a leading role in the decomposition process. Therefore, removal efficiency of TCE can be improved greatly when water vapor and O3 is injected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zhu, R. R. Li, M. F. Ma, et al. Influence of energy efficiency on VOCs decomposition in non-thermal plasma reactor. International Journal of Environmental Science and Technology, 14 (2017) 1505-1512.

DOI: 10.1007/s13762-017-1256-8

Google Scholar

[2] M. S. Gandhi, Y. S. Mok. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. J. Environ. Sci., 24 (2012) 1234-1239.

DOI: 10.1016/s1001-0742(11)60935-2

Google Scholar

[3] L. Guo, N. Jiang, J. Li, et al. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12 (2018) 15.

DOI: 10.1007/s11783-018-1017-z

Google Scholar

[4] M. Zangouei, B. Haynes. The role of atomic oxygen and ozone in the plasma and post-plasma catalytic removal of N2O. Plasma Chemistry and Plasma processing, 39 (2019) 89-108.

DOI: 10.1007/s11090-018-9926-y

Google Scholar

[5] B. Wang, X. Xu, W. Xu, et al. Choung. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal. Catalysis Surveys from Asia, 22 (2018) 73-94.

DOI: 10.1007/s10563-018-9241-x

Google Scholar

[6] H. Yi, X. Yang, X. Tang, et al. Removal of toluene from industrial gas by adsorption-plasma catalytic process: comparison of closed discharge and ventilated discharge. Plasma Chemistry and Plasma Processing, 38 (2018) 331-345.

DOI: 10.1007/s11090-017-9863-1

Google Scholar

[7] J. S. Chang, K. Urashima, M. Arquilla, T. Ito. Reduction of NOx from combustion flue gases by corona discharge activated methane radical injections. Combust. Sci. Technol., 1998, 133: 31-47.

DOI: 10.1080/00102209808952025

Google Scholar

[8] Z.G. Li, Z. Hu, H.L. Xi, et al. Predictive model of decontamination efficiency of gaseous pollutant by non-equilibrium plasma. J. Electrostat., 68 (2010) 390-393.

DOI: 10.1016/j.elstat.2010.05.010

Google Scholar

[9] Z. Li, H Zhao. Decomposition of ethanethiol by a corona radical injection system. Material Science Forum, 921 (2018) 48-53.

DOI: 10.4028/www.scientific.net/msf.921.48

Google Scholar

[10] J.S. Chang, K. Urashima, Y.X. Tong, et al. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: pilot plant tests. J. Electrostat., 57 (2003) 313-323.

DOI: 10.1016/s0304-3886(02)00168-7

Google Scholar

[11] K. Yukimura, T. Hiramatsu, H. Murakami, et al. Yamashita. Molar ratio and energy efficiency of deNOx using an intermittent DBD ammonia radical injection sysem. IEEE Trans. Plasma Sci., 34 (2006) 235-241.

DOI: 10.1109/tps.2006.872174

Google Scholar

[12] K. Yukimura, K. Kawamura, S. Kambara, et al. Correlation of energy efficiency of NO removal by intermittent DBD radical injection method. IEEE Trans. Plasma Sci., 33 (2005) 763-770.

DOI: 10.1109/tps.2005.844610

Google Scholar

[13] Y. Wu, J. Li, N. H. Wang. Study on increasing the SO2 removal efficiency with the radicals produced by H2O in pulse discharge plasma process. Jpn. J. Appl. Phys. Part2, 40(2001) 838-840.

Google Scholar

[14] H. Lin, X. Gao, Z. Luo, et al. Removal of NOx from Flue Gas with DC Corona Radical Shower System. J. Combust. Sci. Technol., 7 (2006) 207-211.

Google Scholar

[15] M. Sun, Y. Wu, J. L. Zhang, et al. Emission spectra of hydroxyl radical generated in air corona discharge. Spectrosc.. Spect. Anal., 25 (2005) 108-112 (Chinese).

Google Scholar

[16] R. Li, X. Liu. Active species injection in flue gas denitrification. Chem. Eng. Sci., 55 (2000) 2481-2489.

DOI: 10.1016/s0009-2509(99)00487-x

Google Scholar

[17] M. Magureanu, N. B. Mandache, V. I. Parvulescu, et al. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode. Appl. Cataly. B: Environ., 74 (2007) 270-277.

DOI: 10.1016/j.apcatb.2007.02.019

Google Scholar

[18] S. J. Rubio, M. C. Quintero, A. Rodero. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure. J. Hazard. Mater., 186 (2011) 820-826.

DOI: 10.1016/j.jhazmat.2010.11.069

Google Scholar

[19] H. X. Liu, Y. Liu, X. L. Li. Degradation of trichloroethylene in a rod-in-tube pulsed dielectric barrier discharge reactor. J. Xi'an Jiaotong University, 46(2012) 96-101 (Chinese).

Google Scholar

[20] S. B. Han, T. Oda. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sources Sci. Technol., 16 (2007) 413-421.

DOI: 10.1088/0963-0252/16/2/026

Google Scholar

[21] H. Lin, X. Gao, Z. Luo, et al. Removal of NOx with radical injection caused by corona discharge. Fuel, 83 (2004) 1349-1355.

DOI: 10.1016/j.fuel.2004.01.004

Google Scholar

[22] S. Futamura, T. Yamamoto. Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE Trans. Ind. Appl., 33 (1997) 447-453.

DOI: 10.1109/28.568009

Google Scholar