Processing of High Purity Titanium by Equal Channel Angular Pressing at Cryogenic Temperature

Article Preview

Abstract:

Experiments show that high purity titanium (HP-Ti) samples have been successfully processed by equal channel angular pressing (ECAP) using a 120 degree die and a relatively slow ram speed at cryogenic temperature when the HP-Ti rods were trapped with 6061 Al alloy tubes. Optical microscopy (OM) and transmission electron microscopy (TEM) were utilized to investigate the deformed microstructure of the material. Typical microstructures of shear bands and deformation twinning were found in the deformed microstructure of ECAPed HP-Ti. Furthermore, the SAED pattern analysis of the twinning structures revealed that the deformation twinning occurred on {112} planes. Keywords: High purity titanium; ECAP; TEM; Deformation twinning; Cryogenic temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] A. Vinogradov, V. Patlan, Y. Suzuki, Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing, Acta Mater. 50 (2002) 1639-1651.

DOI: 10.1016/s1359-6454(01)00437-2

Google Scholar

[3] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Processing of metals by equal-channel angular pressing, J. Mater. Sci. 36 (2001) 2835-2843.

Google Scholar

[4] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Improvement of mechanical properties for Al alloys using equal-channel angular pressing, J. Mater. Process. Technol. 117 (2001) 288-292.

DOI: 10.1016/s0924-0136(01)00783-x

Google Scholar

[5] T.G. Langdon, M. Furukawa, M. Nemoto, Z. Horita, Using equal-channel angular pressing for refining grain size, JOM. 52 (2000) 30-33.

DOI: 10.1007/s11837-000-0128-7

Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta mater. 46 (1998) 3317-3331.

DOI: 10.1016/s1359-6454(97)00494-1

Google Scholar

[7] S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, G. Gottstein, Texture evolution in commercially pure titanium after warm equal channel angular extrusion, Acta Mater. 59 (2011) 1121-1133.

DOI: 10.1016/j.actamat.2010.10.045

Google Scholar

[8] S. Ferrasse, K.T. Hartwig, R.E. Goforth, V.M. Segal, Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion, Metall. Mater. Trans. A 28 (1997) 1047-1057.

DOI: 10.1007/s11661-997-0234-z

Google Scholar

[9] F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, EBSD analysis of nano-structured copper processed by ECAP, Mater. Sci. Eng. A 528 (2011) 5348-5355.

DOI: 10.1016/j.msea.2011.03.075

Google Scholar

[10] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion, J. Mater. Res, 12 (1997) 1253-1261.

DOI: 10.1557/jmr.1997.0173

Google Scholar

[11] K. Oh-Ishi, Z. Horita, M. Nemoto, M. Furukawa, T.G. Langdon, Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metall. Mater. Trans. A 29 (1998) 2011-2013.

DOI: 10.1007/s11661-998-0027-z

Google Scholar

[12] Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing, Metall. Mater. Trans. A 29 (1998) 2245-2252.

DOI: 10.1007/s11661-998-0102-5

Google Scholar

[13] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Mater. 55 (2007) 4769-4779.

DOI: 10.1016/j.actamat.2007.04.043

Google Scholar

[14] D.H. Shin, I. Kim, J. Jim, Y.S. Kim, S.L. Semiatin, Microstructure development during equal-channel angular pressing of titanium, Acta Mate. 51 (2003) 983-996.

DOI: 10.1016/s1359-6454(02)00501-3

Google Scholar

[15] M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Mater. 55 (2007) 1083-1091.

DOI: 10.1016/j.actamat.2006.09.027

Google Scholar

[16] P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, Avoiding cracks and inhomogeneities in billets processed by ECAP, J. Mater. Sci. 45 (2010) 4561-4570.

DOI: 10.1007/s10853-010-4384-9

Google Scholar

[17] K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region, Mater. Chem. Phys. 143 (2014) 1032-1038.

DOI: 10.1016/j.matchemphys.2013.11.001

Google Scholar

[18] X. Zhao, W. Fu, X. Yang, T.G. Langdon, Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature, Scripta Mater. 59 (2008) 542-545.

DOI: 10.1016/j.scriptamat.2008.05.001

Google Scholar

[19] V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Ultrafine-grained Al–5 wt.% Fe alloy processed by ECAP with backpressure, Mater. Sci. Eng. A 357 (2003) 159-167.

DOI: 10.1016/s0921-5093(03)00215-6

Google Scholar

[20] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Mater. Sci. Eng. A 410 (2005) 324-327.

DOI: 10.1016/j.msea.2005.08.123

Google Scholar

[21] I. Kim, J. Kim, D.H. Shin, C.S. Lee, S.K. Hwang, Effects of equal channel angular pressing temperature on deformation structures of pure Ti, Mater. Sci. Eng. A 342 (2003) 302-310.

DOI: 10.1016/s0921-5093(02)00318-0

Google Scholar

[22] A. Watazu, I. Shigematsu, A. Ma, K. Suzuki, T. Imai, N. Saito, Commercial purity titanium processed by rotary-die equal channel angular pressing method, Mater. trans. 46 (2005) 2098-2101.

DOI: 10.2320/matertrans.46.2098

Google Scholar

[23] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, R.Z. Valiev, A two step SPD processing of ultrafine-grained titanium, Nanostruct. Mater. 11 (1999) 947-954.

DOI: 10.1016/s0965-9773(99)00384-0

Google Scholar

[24] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Mater. Sci. Eng. A 299 (2001) 59-67.

DOI: 10.1016/s0921-5093(00)01411-8

Google Scholar

[25] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A 303 (2001) 82-89.

DOI: 10.1016/s0921-5093(00)01884-0

Google Scholar

[26] X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon, Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature, Mater. Sci. Eng. A 607 (2014) 482-489.

DOI: 10.1016/j.msea.2014.04.014

Google Scholar

[27] A.V. Podolskiy, H.P. Ng, I.A. Psaruk, E.D. Tabachnikova, R. Lapovok, Cryogenic equal channel angular pressing of commercially pure titanium: microstructure and properties, J. Mater. Sci. 49 (2014) 6803-6812.

DOI: 10.1007/s10853-014-8382-1

Google Scholar

[28] A. Jäger, V. Gärtnerova, K. Tesař, Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature, Mater. Sci. Eng. A 644 (2015) 114-120.

DOI: 10.1016/j.msea.2015.07.038

Google Scholar

[29] Y. Iwahashi, J. Wang, Z. Horita, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater. 35 (1996) 143-146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar