Wear Resistance of Pre-ECAP Annealing A356 Al Alloy with 1.5 Wt.% TiB2

Article Preview

Abstract:

The combination of heat treatment, addition of grain refiner and ECAP processing is used to improve mechanical properties and wear resistance of A356 Al alloys with 1.5 wt.% TiB2. The alloys were grouped into as-cast and pre-ECAP annealing. The alloys were characterized with hardness and wear testing, optical microscopy and SEM. The ECAP processing was done through BA route for 4 passes and it improved hardness, distribution of TiB2 and Si particles in the aluminium matrix and increased wear resitance of pre-ECAP annealing specimen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-125

Citation:

Online since:

July 2019

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Westermann, K.O. Pedersen, T. Borvik, O.S. Hopperstad, Work-hardening and ductility of artificially aged AA6060 aluminium alloy, Mechanics of Materials. 97 (2016) 100-117.

DOI: 10.1016/j.mechmat.2016.02.017

Google Scholar

[2] S. Dadbakhsh, A.K. Taheri, C.W. Smith, Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process, Materials Science and Engineering A. 527 (2010) 4758–4766.

DOI: 10.1016/j.msea.2010.04.017

Google Scholar

[3] I. Gutierrez-Urrutia, M.A. Munoz-Morris, D.G. Morris, The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy, Materials Science and Engineering A. 394 (2005) 399–410.

DOI: 10.1016/j.msea.2004.11.025

Google Scholar

[4] P.J. Apps, J.R. Bowen, P.B. Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Materialia. 51 (2003) 2811–2822.

DOI: 10.1016/s1359-6454(03)00086-7

Google Scholar

[5] E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys, Materials and Design. 56 (2014) 468-479.

DOI: 10.1016/j.matdes.2013.11.058

Google Scholar

[6] S. Tabibian, E. Charkaluk, A. Constantinescu, G. Guillemot, F. Szmytka, Influence of process-induced microstructure on hardness of two Al–Si alloys, Materials Science & Engineering A. 646 (2015) 190-200.

DOI: 10.1016/j.msea.2015.08.051

Google Scholar

[7] G.E. Totten, D.S. MacKenzie, Handbook of Aluminium: Physical Metallurgy and Processes, Vol. 1, Marcell Dekker, (2003).

Google Scholar

[8] C.M. Cepeda-Jimenez, J.M. Garcia-Infanta, A.P. Zhilyaev, O.A. Ruano, F. Carreno, Influence of the supersaturated silicon solid solution concentration on the effectiveness of severe plastic deformation processing in Al–7 wt% Si casting alloy, Mater Sci Eng A. 528 (2011) 7938–47.

DOI: 10.1016/j.msea.2011.07.016

Google Scholar

[9] W. Kui, C. Chunxiang, W. Qian, Z. Lichen, H. Yuan, Microstructure of Al-5Ti-1B-1RE nanoribbon and its refining efficiency on as-cast A356 alloys, Journal of Rare Earth. Vol. 31, No. 3 (2013) 313-318.

DOI: 10.1016/s1002-0721(12)60278-6

Google Scholar

[10] F. Czerwinski, Heat treatment - conventional and novel applications, ISBN 978-953-51-0768-2, (2012).

Google Scholar

[11] M. Meyer, K. Chawla, Mechanical behavior of material, 2nd edition, Cambridge University Press, (2009).

Google Scholar

[12] V.S. Zolotorevsky, N.A. Belov, M.V. Glazof, Casting Aluminum Alloys, Elsevier, (2007).

Google Scholar

[13] J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, W.J. Kim, Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing. Scripta materialia. 45 (2001) 901-907.

DOI: 10.1016/s1359-6462(01)01109-5

Google Scholar

[14] P. Venkatachalam, S.R. Kumar, B. Ravisankar, V.T. Paul, M. Vijayalakshmi, Effect of processing route on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China. 20 (2010) 1822-28.

DOI: 10.1016/s1003-6326(09)60380-0

Google Scholar

[15] C.T. Wang, N. Gao, R.J.K. Wood, T.G. Langdon, Wear behaviour of Al-1050 alloy processed by severe plastic deformation, Materials Science Forum. 5th International Conference on Nanomaterials by Severe Plastic Deformation. Vol. 667-669 (2011) 1101-1106.

DOI: 10.4028/www.scientific.net/msf.667-669.1101

Google Scholar

[16] I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Review: Nanostructured aluminum alloys produced by severe plastic deformation: New horizons in development, Materials Science & Engineering A. 560 (2013) 1-24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[17] M.I. Abd El Aal, N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, E.Y. Yoon, H.S. Kim, Wear properties of ECAP-processed ultrafine grained Al-Cu alloys, Materials Science and Engineering A. 527 (2010) 3726-3732.

DOI: 10.1016/j.msea.2010.03.057

Google Scholar

[18] G. Purcek, O. Saray, T. Kucukomeroglu, M. Haouaoui, I. Karaman, Effect of equal-channel angular extrusion on the mechanical and tribological properties of as-cast Zn–40Al–2Cu–2Si alloy, Materials Science and Engineering A. 527 (2010) 3480–3488.

DOI: 10.1016/j.msea.2010.02.019

Google Scholar