Study of the Creep Deformation of Sanicro 25 Austenitic Steel by Computer Simulations

Article Preview

Abstract:

The Abaqus software was used to simulate the creep behavior of a cylindrical tube of Sanicro-25 austenitic steel under an internal pressure of 11.3 MPa at a uniform temperature at 750 °C. The data used for the simulation input were obtained from the experimental data of a previous work. The hidden information of material parameters was estimated from the shape of creep strain versus time plots obtained from the experimental data. The validated results between the simulation and the experimental data produced the material parameter of the creep power law which were set at 2.6 x 10-22 for the power law constant and 9 for the stress exponent. The parameters were further used to explore the stress and strain inside and outside of the tube wall and the thickness changes of the tube wall.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-162

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. B. Wang, X. F. Chang, and J. Key, New insight into high-temperature creep deformation and fracture of T92 steel involving precipitates, dislocations and nanovoids,, Mater. Charact., vol. 127, p.1–11, (2017).

DOI: 10.1016/j.matchar.2017.01.025

Google Scholar

[2] J. Brnic, G. Turkalj, M. Canadija, and D. Lanc, Creep behavior of high-strength low-alloy steel at elevated temperatures,, Mater. Sci. Eng. A, vol. 499, no. 1–2, p.23–27, (2009).

DOI: 10.1016/j.msea.2007.08.102

Google Scholar

[3] G. S. Tibba and H. Altenbach, Modelling Creep Behaviour of Superheater Materials,, Energy Procedia, vol. 93, no. March, p.197–202, (2016).

DOI: 10.1016/j.egypro.2016.07.170

Google Scholar

[4] S. Chaudhuri and R. N. Ghosh, Creep behavior of 2.25Cr1Mo steel-Effects of thermal ageing and pre-strain,, Mater. Sci. Eng. A, vol. 510–511, no. C, p.136–141, (2009).

DOI: 10.1016/j.msea.2008.04.108

Google Scholar

[5] S. Nandi, G. J. Reddy, and K. Singh, Microstructural changes in IN617 superalloy during creep at high temperatures,, Procedia Eng., vol. 86, p.66–70, (2014).

DOI: 10.1016/j.proeng.2014.11.012

Google Scholar

[6] Y. Chen et al., Creep behaviors and microstructure analysis of CNS-2 steel at elevated temperatures and stresses,, J. Nucl. Mater., vol. 495, p.306–313, (2017).

DOI: 10.1016/j.jnucmat.2017.08.003

Google Scholar

[7] T. H. Kim and Y. S. Chang, Numerical Study on Creep Rupture Behavior of SA533B Low-Alloy Steel,, Procedia Eng., vol. 130, p.1755–1760, (2015).

DOI: 10.1016/j.proeng.2015.12.205

Google Scholar

[8] M. Cowan and K. Khandelwal, Modeling of high temperature creep in ASTM A992 structural steels,, Eng. Struct., vol. 80, p.426–434, (2014).

DOI: 10.1016/j.engstruct.2014.09.020

Google Scholar

[9] S. Hore and R. N. Ghosh, Computer simulation of the high temperature creep behaviour of Cr-Mo steels,, Mater. Sci. Eng. A, vol. 528, no. 19–20, p.6095–6102, (2011).

DOI: 10.1016/j.msea.2011.04.050

Google Scholar

[10] T. Massé and Y. Lejeail, Creep behaviour and failure modelling of modified 9Cr1Mo steel,, Nucl. Eng. Des., vol. 246, p.220–232, (2012).

DOI: 10.1016/j.nucengdes.2012.02.006

Google Scholar

[11] L. Kloc, P. Dymáček, and V. Sklenička, High temperature creep of Sanicro 25 austenitic steel at low stresses,, Mater. Sci. Eng. A, vol. 722, p.88–92, (2018).

DOI: 10.1016/j.msea.2018.02.095

Google Scholar

[12] W. L. Oberkampf and M. F. Barone, Measures of agreement between computation and experiment: Validation metrics,, J. Comput. Phys., vol. 217, no. 1, p.5–36, (2006).

DOI: 10.1016/j.jcp.2006.03.037

Google Scholar