Improved SiO2/ 4H-SiC Interface Defect Density Using Forming Gas Annealing

Article Preview

Abstract:

We investigated the influence of forming gas annealing (FGA) before and after oxide deposition on the SiO2/4H-SiC interface defect density (Dit). For MOS capacitors (MOSCAPs) that were processed using FGAs at temperatures above 1050°C, CV characterization revealed decreased flat band voltage shifts and stretch-out for different sweep directions and frequencies. Moreover, constant-capacitance deep level transient spectroscopy (CC-DLTS) was performed and showed Dit levels below 1012 cm-2eV-1 for post deposition FGA at 1200°C. Finally, lateral MOSFETs were fabricated to analyze the temperature-dependent threshold voltage (Vth) shift.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-468

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Palmour, L. Cheng, V. Pala, E. V. Brunt, D. J. Lichtenwalner, et al., Silicon Carbide Power MOSFETs: Breakthrough Performance from 900 V up to 15 kV, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014, p.79–82.

DOI: 10.1109/ispsd.2014.6855980

Google Scholar

[2] T. Kimoto & J. A. Cooper, Fundamentals of Silicon Carbide Technology, first ed., John Wiley & Sons Inc., Wiley-IEEE Press, Singapore, (2014).

Google Scholar

[3] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide, IEEE Electron Devices Lett., vol. 31 (7), pp.710-712, (2010).

DOI: 10.1109/led.2010.2047239

Google Scholar

[4] Y.K. Sharma, A.C. Ahyi, T. Issacs-Smith, X. Shen, S.T. Pantelides, et al., Phosphorous passivation of the SiO2/4H-SiC interface, Solid-State Electronics, vol. 68 pp.103-107, (2012).

DOI: 10.1016/j.sse.2011.10.030

Google Scholar

[5] A. Modic, G. Liu, A. C. Ahyi, Y. Zhou, P. Xu, et al., High channel mobility 4H-SiC MOSFETs by antimony counter-doping, IEEE Electron Device Lett., vol 35 (9), pp.894-896, (2014).

DOI: 10.1109/led.2014.2336592

Google Scholar

[6] D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation, IEEE Electron Device Lett., vol. 35, no. 12, p.1176–1178, (2014).

DOI: 10.1109/led.2014.2362768

Google Scholar

[7] G. Liu, B. R. Tuttle, S. Dhar, Silicon carbide: A unique platform for metal-oxide-semiconductor physics, Appl. Phys. Rev. 2, 021307, (2018).

DOI: 10.1063/1.4922748

Google Scholar