Preliminary Study of Alginates Extracted from Brown Algae (Sargassum sp.) Available in Madura Island as Composite Based Hydrogel Materials

Article Preview

Abstract:

Utilization of brown algae especially in Madura, where it’s close to Surabaya, only limited for food. This become a reference for developing and increasing the potential of this algae by extracting one of the ingredients, namely alginate. This paper deals with the characterization of sodium alginate extracted from sargassum sp. using modified-purified calcium routes. The extracted sodium alginate will be further used as composite hydrogel materials and compared with commercial sodium alginate. Hereafter, the synthesized composite is expected to be bio-ink for 3d printer. Chemical composition analysis were analyzed using X-Ray Fluorosense (XRF) followed by Fourier-transform infrared spectroscopy (FTIR) analysis to identify the functional group of composite and X-Ray Diffraction (XRD). Furthermore, viscosity bath is performed to compare the viscosity of extracted and commercial one. The result shows that modified-purified calcium routes in the extraction process of sodium alginate is desirable for improving their properties. Interestingly enough, with the goal of using it as bio-ink in 3d printed fabrication, the synthesized composite shows viscosity, 300 cSt, which meets the criteria for bio-ink in 3d printer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-245

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yunizal, K. Pengembangan pengolahan rumput laut. 2004. pp.9-12.

Google Scholar

[2] Bixler, H.J. A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology (2011) Volume 23, Issue 3, p.321–335.

DOI: 10.1007/s10811-010-9529-3

Google Scholar

[3] Gerasimenko. Seasonal Changes in the Content of Lipids, Fatty Acids, and Pigments in Brown Alga Costaria costata. Russian Journal of Plant Physiology (2010) Volume 57, Issue 2, p.205–211.

DOI: 10.1134/s102144371002007x

Google Scholar

[4] Atmadja, W.S., A., Kadi, Sulistijo dan R. Satari. Pengenalan Jenis-Jenis Rumput Laut Indonesia. Puslitbang. Jakarta. (2012).

Google Scholar

[5] Derby, Basmal. Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med (2002) 1163–1166.

Google Scholar

[6] Gomeza, C.G. Influence of the extraction–purification conditions on final properties of alginates brown algae. International Journal of Biological Macromolecules (2009). Volume 44, Issue 4, pp.365-371.

DOI: 10.1016/j.ijbiomac.2009.02.005

Google Scholar

[7] Mutia, Theresia. Membran Alginat Sebagai Pembalut Luka Primer. Jurnal riset industry.2011. Vol 5, No 2 161-174.

DOI: 10.31266/at.v26i1.1438

Google Scholar

[8] Anwar, Hina, . Alginate-Polyvinyl Alcohol Based IPN for Prolonged Drug Therapy. Carbohydrate polymer (2017) 183-194.

DOI: 10.1016/j.carbpol.2017.02.080

Google Scholar

[9] Nasim, Golafshan. 2016. Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for neural construct. Carbon (2017) Volume 111, 2017, Pages 752-763.

DOI: 10.1016/j.carbon.2016.10.042

Google Scholar

[10] Ye, Mao. Morphology and properties of polyvinyl alcohol (PVA) scaffolds: Impact of process variables. Mater Sci Eng C Mater Biol Appl. (2014) p.289–294.

Google Scholar

[11] Seung-Taek Oh. The Effect of Bentonite Concentration on the Drug Delivery Efficacy of a pH-sensitive Alginate/Bentonite Hydrogel. Fibers and Polymers 2009, Vol.10, No.1, 21-26.

DOI: 10.1007/s12221-009-0021-0

Google Scholar

[12] Luo, Yongxiang. 3D Bioprinting Scaffold Using Alginate/Polyvinyl Alcohol Bioinks. Materials Letters (2017) Volume 189, Pages 295-298.

DOI: 10.1016/j.matlet.2016.12.009

Google Scholar

[13] P., Honghyun. Alginate hydrogels modified with low molecular weight hyaluronatefor cartilage regeneration. Carbohydr Polym. (2017) 162:100-107.

Google Scholar

[14] K Fukushima, MH Wu, S Bocchini, A Rasyida, MC Yang. PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering: C (2012) 32 (6), 1331-1351.

DOI: 10.1016/j.msec.2012.04.005

Google Scholar

[15] ST Wicaksono, A Rasyida, A Purnomo, NN Pradita, H Ardhyananta, MIP Hidayat. Composite Based Chitosan/Zinc-Doped HA as a Candidate Material for Bone Substitute Applications. IOP Conference Series: Materials Science and Engineering (2017), 202 (1), 012080.

DOI: 10.1088/1757-899x/202/1/012080

Google Scholar

[16] A Rasyida, ST Wicaksono, NN Pradita, H Ardhyananta, A Purnomo. Effect of chitosan addition to characteristic and antimicrobial activity of zinc doped hydroxyapatite. IOP Conference Series: Materials Science and Engineering (2017), 223 (1), 012063.

DOI: 10.1088/1757-899x/223/1/012063

Google Scholar

[17] A Rasyida, K Fukushima, MC Yang. Structure and properties of organically modified poly (butylene adipate-co-terephthalate) based nanocomposites. IOP Conference Series: Materials Science and Engineering (2017) 223 (1), 012023.

DOI: 10.1088/1757-899x/223/1/012023

Google Scholar

[18] Tesson B., Genet M.J., Fernandez V., Degand S., Rouxhet P.G., Martin-Jézéquel V., Surface Chemical Composition of Diatoms, European Journal of Chemical Biology (2009), 10, 2011-2024.

DOI: 10.1002/cbic.200800811

Google Scholar

[19] Decky J Indriani dan Emil Budianto. A study of extraction and characterization of alginates obtained from brown macroalgae Sargassum duplicatum and Sargassum crassifolium from Indonesia. Dental jurnal Majalah Kedokteran Gigi (2013) Volume 46 no 2.

DOI: 10.20473/j.djmkg.v46.i2.p65-70

Google Scholar

[20] Decky J., Indriani. Komposit Hidroksiapatit Kalsinasi Suhu Rendah Dengan Alginat Sargassum Duplicatum Atau Sargassum Crassifolium Sebagai Material Scaffold Untuk Pertumbuhan Sel Punca Mesenkimal. Dental jurnal Majalah Kedokteran Gigi Volume (2013) 46 no 2.

DOI: 10.20473/j.djmkg.v46.i2.p65-70

Google Scholar

[21] McHugh, D.J.. A guide to the seaweed industry. FAO Fisheries Technical Paper-441 (1987), p.105.

Google Scholar

[22] Narayanan KB,Han SS. Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite beads - A promising antimicrobial material. Food Chemistry (2017), 234:103-110.

DOI: 10.1016/j.foodchem.2017.04.173

Google Scholar

[23] Helmiyati and M Aprilliza. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf. Series: Materials Science and Engineering 1234567890 188 (2017) 012019.

DOI: 10.1088/1757-899x/188/1/012019

Google Scholar

[24] Murphy, S.V., Skardal, A., dan Atala, A. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res-A101A(1) (2013), p.272–284.

DOI: 10.1002/jbm.a.34326

Google Scholar