A more Sustainable Polyurethane Membrane for Gas Separation at Room Temperature and Low Pressure

Article Preview

Abstract:

Membrane separation technology has been recently attracted more attention as an option for gas separations due to its compact system, ease of operation and low power consumption. In this study, polymer membranes with different percentages of polyurethane were synthesized and submitted to permeability and selectivity tests for the following gases, CO2, N2, O2 and CH4, at two pressures of 4 and 8 bar and at room temperature. The membranes were characterized by FTIR-ATR, Scanning electron microscope (SEM), Thermogravimetric analysis (TGA) and X-ray diffractometer (XRD). At low pressure of 4 bar and room temperature, the membrane with low percentage of PU, 10 %, presented the higher selectivity to CO2 in relation to both N2 and CH4. The same behavior was observed at a high pressure of 8 bar, with higher selectivity to CO2 in relation to all studied gases, N2, O2 and CH4, compared to the already analogous reported membranes submitted at greater pressures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-132

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Talakesh, M. Sadeghi, M. P. Chenar, A. Khosravi, Gas separation properties of poly(ethyleneglycol)/poly(tetramethylene glycol) based polyurethane membranes. Journal of Membrane Science 415–416 (2012) 469–477.

DOI: 10.1016/j.memsci.2012.05.033

Google Scholar

[2] A. Isfahani, M. Sadeghi, A. Dehaghani, M. Aravand, Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. Journal of Industrial and Engineering Chemistry 44 (2016) 67–72.

DOI: 10.1016/j.jiec.2016.08.012

Google Scholar

[3] M. Sadeghi, A. Shamsabadi, A. Ronasi, A. Isfahanis, M. Dinari, M. Soroush, Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chemical Engineering Science 192 (2018) 688–698.

DOI: 10.1016/j.ces.2018.08.030

Google Scholar

[4] M. Sadeghi, M.M. Talakeshi, B. Ghalei, M. Shafiei, Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 427 (2013) 21-29.

DOI: 10.1016/j.memsci.2012.07.036

Google Scholar

[5] M.B. Karami, G. Khanbabaei, G.M.M. Sadeghi, Vegetable oil-based polyurethane membrane for gas separation. Journal of Membrane Science 527 (2017)198-206.

DOI: 10.1016/j.memsci.2016.12.008

Google Scholar

[6] M. Karimi, G. Khanbabaei, G. Sadeghi, A. Jafari, Effect of nano-silica on gas permeation properties of polyether-based polyurethane membrane in the presence of esterified canola oil diol as a nucleation agent for hard segments. J. Appl. Polym. Sci. 135 (2018) 45979.

DOI: 10.1002/app.45979

Google Scholar

[7] J. E. VIglio; G. M. Di Giulio; L. C. AND Ferreira. Ambiente & Sociedade. 3 (2017) 21-38.

Google Scholar

[8] M. Aziz, S. Mousavi, CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation. Journal of Molecular Structure 1100 (2015) 401-414.

DOI: 10.1016/j.molstruc.2015.07.029

Google Scholar

[9] M. Clemente, R.J. Rocha, K. Iha, Desenvolvimento de tecnologia de pré-polímeros na síntese de poliuretanos empregados em combustíveis sólidos. Química Nova 37 (2014) 982-988.

DOI: 10.1590/s0100-40422013000600009

Google Scholar

[10] F.M.B. Coutinho M. Delpech, Degradation profile of films cast from aqueous polyurethane dispersions. Polymer Degradation and Stability 70 (2000) 49-57.

DOI: 10.1016/s0141-3910(00)00087-2

Google Scholar

[11] Hua Li a, B. D. Freemana, O. M. Ekneir, Gas permeation properties of poly(urethane-urea)s containing different polyethers. Journal of Membrane Science 369 (2011) 49–58.

DOI: 10.1016/j.memsci.2010.11.024

Google Scholar