Water and Power Consumption, Ethanol Production and CO2 Emissions: High-Scale Sugarcane-Based Biorefinery Toward Neutrality in Carbon

Article Preview

Abstract:

The present work assesses water and power consumption, ethanol production and CO2 emissions in order to evaluate the technical and economic feasibility of a high-scale sugarcane-based biorefinery and propose a scenario of full carbon and capture system, so the complex could become a sustainable carbon withdrawer from the atmosphere. This work is performed with the aid of professional software for a rigorous mass and energy balances simulation to achieve process data for plant technical and economic analysis. The combustion of sugarcane bagasse is the only source of energy of the plant, which provides steam for the distillery and generates electricity through cogeneration system. The ethanol production from sugars fermentation produces CO2 which, jointly with the CO2 from combustion, is released directly into the atmosphere contributing to global warming. Results demonstrate that for processing capacity of 1,000 t/h of sugarcane, the plant emits 0.7 tCO2 per ton of sugarcane, with net water consumption of 3,600 m3/h as make-up water to replace blowdown and evaporation losses in the cooling tower. The cogeneration system generates 320MW of net power for exportation as electricity. The economic analysis reveals a fixed capital investment of 910MMUSD and a net present value of 378MMUSD considering as revenues the ethanol produced and the electricity from cogeneration at an annual discount rate of 10%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-95

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] RFA (Renewable Fuel Association). Statistics data. 2018. Information on http://www.ethanolrfa.org/pages/statistics.

Google Scholar

[2] E.A Pina, R. Palacios-Bereche, M.F. Chavez-Rodriguez, A.V. Ensinas, M. Modesto, S.A. Nebra, Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane - Evaluation of different plant configurations, Energy. 138 (2017) 1263-1280.

DOI: 10.1016/j.energy.2015.06.054

Google Scholar

[3] C. Machado, O.Q.F. Araujo, J.L. de Medeiros, R. Alves, Carbon dioxide and ethanol from sugarcane biorefinery as renewable feedstocks to environment-oriented integrated chemical plants, Journal of Cleaner Production. 172 (2018) 1232-1242.

DOI: 10.1016/j.jclepro.2017.10.234

Google Scholar

[4] S. Fuss, J.G. Canadell, G. P. Peters, M. Tavoni, R.M. Andrew, P. Ciais, R.B. Jackson, C.D. Jones, F. Kraxner, N. Nakicenovic, C. Le Quéré, M.R. Raupach, A. Sharifi, P. Smith, Y. Yamagata, Betting on negative emissions, Nat Clim Change. 4 (2014) 850–853.

DOI: 10.1038/nclimate2392

Google Scholar

[5] A.V. Ensinas, M. Modesto, S.A. Nebra, L. Serra, Reduction of irreversibility generation in sugar and ethanol production from sugarcane, Energy. 34 (2009) 680– 688.

DOI: 10.1016/j.energy.2008.06.001

Google Scholar

[6] M.O.S. Dias, M. Modesto, A.V. Ensinas, S.A. Nebra, R.M. Filho, C.E.V Rossell, Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems, Energy. 36 (2011) 3691-3703.

DOI: 10.1016/j.energy.2010.09.024

Google Scholar

[7] M.O.S. Dias, T.L. Junqueira, C.E.V. Rossel, R. Maciel Filho, A. Bonomi, Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane, Fuel Processing Technology. 109 (2013) 84–89.

DOI: 10.1016/j.fuproc.2012.09.041

Google Scholar

[8] São Martinho, 2018. Dados operacionais da usina, 2018. Information on http://ri.saomartinho.ind.br/saomartinho.

Google Scholar

[9] R. TURTON, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Process, 4. ed. EUA: Prentice Hal, (2012).

Google Scholar

[10] H. Zabed, G. Faruq, J.N. Sahu, M.S. Azirun, R. Hashim, A.N. Boyce, Bioethanol Production from Fermentable Sugar Juice, Sci. World J. (2014) 1-11.

DOI: 10.1155/2014/957102

Google Scholar

[11] Agrolink, Cotações de cana-de-acúcar, 2018. Information on https://www.agrolink.com.br/cotacoes/diversos/cana-de-acucar.

Google Scholar

[12] SSRH-SP, Secretaria de Saneamento e Recursos Hídricos de São Paulo, 2018. Cobrança pelo uso de recursos hídricos. Information on http://143.107.108.83/sigrh/cobranca/perguntas.html.

DOI: 10.1787/9789264288423-9-pt

Google Scholar

[13] CEPEA, Centro de Estudos Avançados em Economia Aplicada, Preço do etano hidratado, 2018. Information on https://www.cepea.esalq.usp.br/br/indicador/etanol.aspx.

Google Scholar

[14] EBC, Empresa Brasil de Comunicação, Custo da energia elétrica para pequena e média indústria, 2017. Information on http://agenciabrasil.ebc.com.br/economia.

Google Scholar