[1]
A. Rafiee, R.K. Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: A review from process systems perspective, J. Environ. Chem. Eng. 6 (2018) 5771–5794.
DOI: 10.1016/j.jece.2018.08.065
Google Scholar
[2]
A.L.A. de Souza, M.O. Vieira, B.B. Polesso, F.W. Cobalchini, F.L. Bernard, F.D. Vecchia, S. Einloft, Sorção de CO2 utilizando líquido iônico aditivado com extensores de área superficial, Quim. Nova 41 (2018) 656-661.
DOI: 10.21577/0100-4042.20170227
Google Scholar
[3]
M.O. Vieira, A.S. Aquino, M.K. Schütz, F.D. Vecchia, R. Ligabue, M. Seferin, S. Einloft, Chemical conversion of CO2: evaluation of different ionic liquids as catalysts in dimethyl carbonate synthesis, Energy procedia 114 (2017) 7141-7149.
DOI: 10.1016/j.egypro.2017.03.1876
Google Scholar
[4]
M.O. Vieira, W.F. Monteiro, B.S. Neto, V.V. Chaban, R. Ligabue, S. Einloft, Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent‑free conditions, React. Kinet. Mech. Cat. 126 (2019) 987-1001.
DOI: 10.1007/s11144-019-01544-6
Google Scholar
[5]
J. Heymann, M. Reuter, M. Buchwitz, O. Schneizing, H. Bovensmann, J.P. Burrows, S. Massart, J.W. Kaiser, D .Crisp, CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations, Geophys. Res. Lett. 44 (2017) 1537-1544.
DOI: 10.1002/2016gl072042
Google Scholar
[6]
A. Decortes, M.M. Belmonte, J.B. Buchholz, A.W. Kleij, Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst, Chem. Commun. 46 (2010) 4580-4582.
DOI: 10.1039/c000493f
Google Scholar
[7]
D.J. Darensbourg, M. Ulusoy, O. Karroonnirum, R.R. Poland, J.H. Reibenspies, B. Cetinkaya, Highly Selective and Reactive (salan)CrCl Catalyst for the Copolymerization and Block Copolymerization of Epoxides with Carbon Dioxide, Macromol. 42 (2009) 6992-6998.
DOI: 10.1021/ma901364x
Google Scholar
[8]
M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2, Green Chem. 12 (2010) 1514-1539.
DOI: 10.1039/c0gc00065e
Google Scholar
[9]
A.S. Aquino, F.L. Bernard, M.O. Vieira, J.V. Borges, M.F. Rojas, F.D. Vecchia, R.A. Ligabue, M. Seferin, S. Menezes, S. Einloft, A New Approach to CO2 Capture and Conversion Using Imidazolium Based-Ionic Liquids as Sorbent and Catalyst, J. Braz. Chem. Soc. 25 (2014) 2251-2257.
DOI: 10.5935/0103-5053.20140176
Google Scholar
[10]
M.O. Vieira, W.F. Monteiro, B.S. Neto, R. Ligabue, V.V. Chaban, S. Einloft, Surface Active Ionic Liquids as Catalyst for CO2 Conversion to Propylene Carbonate, Catal. Lett. 48 (2018) 108–118.
DOI: 10.1007/s10562-017-2212-4
Google Scholar
[11]
A. Buonerba, A.D. Nisi, A. Grassi, S. Milione, C. Capacchione, S. Vagin, B. Rieger, Novel iron(III) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to form cyclic carbonates, Catal. Sci. Technol. 5 (2015) 118-123.
DOI: 10.1039/c4cy01187b
Google Scholar
[12]
A.S. Aquino, F.L. Bernard, J.V. Borges, L. Mafra, F.D. Vecchia, M.O. Vieira, R. Ligabue, M. Seferin, V.V. Chaban, E.J. Cabrita, S. Einloft, Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica, RSC Adv. 5 (2015) 64220-64227.
DOI: 10.1039/c5ra07561k
Google Scholar
[13]
W.L. Dai, S.F. Yin, R. Guo, S.L. Luo, X. Du, C.T. Au, Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide Using Zn-Mg-Al Composite Oxide as High-efficiency Catalyst, Catal. Lett. 136 (2010) 35-44.
DOI: 10.1007/s10562-009-0198-2
Google Scholar
[14]
D.B. Tkatchenko, F. Bernard, F. Demoisson, L. Plasseraud, S.R. Sanapureddy, Tin-Based Mesoporous Silica for the Conversion of CO2 into Dimethyl Carbonate, Chem. Sus. Chem. 4 (2011) 1316-1322.
DOI: 10.1002/cssc.201100034
Google Scholar
[15]
Q. Ai, D. Yang, Y. Li, J. Hi, X. Wang, Z. Jiang, Highly efficient covalent immobilization of catalase on titanate nanotubes, Biochem. Eng. J. 83 (2014) 8-15.
DOI: 10.1016/j.bej.2013.11.021
Google Scholar
[16]
X. Yang, L. Wu, L. Ma, X. Li, T. Wang, S. Liao, Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde, Catal. Commun. 59 (2015) 184-188.
DOI: 10.1016/j.catcom.2014.10.031
Google Scholar
[17]
W.F. Monteiro, C.A.B. dos Santos, S. Einloft, M. Oberson, C.L.P. Carone, R. Ligabue, Preparation of Modified Titanate Nanotubes and Its Application in Polyurethane Nanocomposites, Macromol. Symp., 368 (2016) 93-97.
DOI: 10.1002/masy.201500146
Google Scholar
[18]
R. Camposeco, S. Castillo, I.M. Centeno, J. Navarrete, V.R. Gonzales, Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes, Microporous Mesoporous Mater. 236 (2016) 235-243.
DOI: 10.1016/j.micromeso.2016.08.033
Google Scholar
[19]
P.H. Hipólito, N.J. Flores, E.M. Klimova, A.G. Cortés, X. Bokhimi, A.L.E. Larcón, T.E. Klimanova, Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium, Catal. Today 250 (2015) 187-196.
DOI: 10.1016/j.cattod.2014.03.025
Google Scholar
[20]
B. László, K. Baán, E. Varga, A. Oszkó, A. Erdöhelyi, Z. Kónya, J. Kiss, Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles, Appl. Catal. B 199 (2016) 473-484.
DOI: 10.1016/j.apcatb.2016.06.057
Google Scholar
[21]
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir 14 (1998) 3160-3163.
DOI: 10.1021/la9713816
Google Scholar
[22]
S. Sim, E.B. Cho, S. Chatterjee, H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure, Chem. Eng. J. 303 (2016) 64-72.
DOI: 10.1016/j.cej.2016.05.099
Google Scholar
[23]
W.F. Monteiro, M.O. Vieira, A.S. Aquino, M.O. Souza, S. Einloft, R. Ligabue, CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires, Appl. Catal. A 544 (2017) 46-54.
DOI: 10.1016/j.apcata.2017.07.011
Google Scholar
[24]
W. Liu, W. Sun, A.G.L. Borthwick, J. Ni, Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: Influence of pH, ionic strength and natural organic matter, Colloids Surf. A 434 (2013) 319-328.
DOI: 10.1016/j.colsurfa.2013.05.010
Google Scholar
[25]
D.C. Carvalho, A.C. Oliveira, O.P. Ferreira, J.M. Filho, S.T. Cuapa, A.C. Oliveira, Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance, Chem. Eng. J 313 (2016) 1454-1467.
DOI: 10.1016/j.cej.2016.11.047
Google Scholar
[26]
C.C. Tsai, L.C. Chen, T.F. Yeh, H. Teng, In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination, J. Alloys Compd, 546 (2013) 95-101.
DOI: 10.1016/j.jallcom.2012.08.081
Google Scholar
[27]
S. Zhong, L. Liang, M. Liu, J. Sun, DMF and mesoporous Zn/SBA-15 as synergistic catalysts for the cycloaddition of CO2 to propylene oxide, J. CO2 Util. 9 (2015) 58-65.
DOI: 10.1016/j.jcou.2014.12.006
Google Scholar