CO2 Chemical Conversion Using Catalytics Systems Based on Titanate Nanotubes

Article Preview

Abstract:

CO2 is the most important greenhouse gas in terms of emitted quantities and its emission has increased significantly due to the action of anthropogenic sources. Among the alternatives for mitigation of this gas is the direct synthesis of propylene carbonate (PC), which requires efficient and selective catalysts. In this scenario the titanate nanotubes (TNT) are promising catalysts because they can be modified to become selective for the PC synthesis. The present work has the objective to develop titanate nanotubes with different metals (Na, Sn and Zn) as well as protonated titanate nanotubes (HTNT) and to test their efficiency in the direct synthesis of PC. The synthesized nanostructures were characterized by TEM, EDS, XRD and N2 adsorption-desorption. The results showed that the synthesized TNT have a specific surface area of 155, 232, 56 and 140 m2/g (NaTNT, HTNT, SnTNT and ZnTNT, respectively). Besides, the ion exchange of [Na+] by [Sn+2] and [Zn+2] decreased the crystallinity of nanostructure. On the catalytic tests, the system NaTNT/ZnBr2 showed the best results with a yield of 61% and a selectivity of 81% in PC. The catalytic system SnTNT/DMF and ZnTNT/DMF are promising to this reaction showing interesting yields and catalytic activity (59 and 53%; 295 and 265 mmol/g) for PC synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rafiee, R.K. Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: A review from process systems perspective, J. Environ. Chem. Eng. 6 (2018) 5771–5794.

DOI: 10.1016/j.jece.2018.08.065

Google Scholar

[2] A.L.A. de Souza, M.O. Vieira, B.B. Polesso, F.W. Cobalchini, F.L. Bernard, F.D. Vecchia, S. Einloft, Sorção de CO2 utilizando líquido iônico aditivado com extensores de área superficial, Quim. Nova 41 (2018) 656-661.

DOI: 10.21577/0100-4042.20170227

Google Scholar

[3] M.O. Vieira, A.S. Aquino, M.K. Schütz, F.D. Vecchia, R. Ligabue, M. Seferin, S. Einloft, Chemical conversion of CO2: evaluation of different ionic liquids as catalysts in dimethyl carbonate synthesis, Energy procedia 114 (2017) 7141-7149.

DOI: 10.1016/j.egypro.2017.03.1876

Google Scholar

[4] M.O. Vieira, W.F. Monteiro, B.S. Neto, V.V. Chaban, R. Ligabue, S. Einloft, Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent‑free conditions, React. Kinet. Mech. Cat. 126 (2019) 987-1001.

DOI: 10.1007/s11144-019-01544-6

Google Scholar

[5] J. Heymann, M. Reuter, M. Buchwitz, O. Schneizing, H. Bovensmann, J.P. Burrows, S. Massart, J.W. Kaiser, D .Crisp, CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations, Geophys. Res. Lett. 44 (2017) 1537-1544.

DOI: 10.1002/2016gl072042

Google Scholar

[6] A. Decortes, M.M. Belmonte, J.B. Buchholz, A.W. Kleij, Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst, Chem. Commun. 46 (2010) 4580-4582.

DOI: 10.1039/c000493f

Google Scholar

[7] D.J. Darensbourg, M. Ulusoy, O. Karroonnirum, R.R. Poland, J.H. Reibenspies, B. Cetinkaya, Highly Selective and Reactive (salan)CrCl Catalyst for the Copolymerization and Block Copolymerization of Epoxides with Carbon Dioxide, Macromol. 42 (2009) 6992-6998.

DOI: 10.1021/ma901364x

Google Scholar

[8] M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2, Green Chem. 12 (2010) 1514-1539.

DOI: 10.1039/c0gc00065e

Google Scholar

[9] A.S. Aquino, F.L. Bernard, M.O. Vieira, J.V. Borges, M.F. Rojas, F.D. Vecchia, R.A. Ligabue, M. Seferin, S. Menezes, S. Einloft, A New Approach to CO2 Capture and Conversion Using Imidazolium Based-Ionic Liquids as Sorbent and Catalyst, J. Braz. Chem. Soc. 25 (2014) 2251-2257.

DOI: 10.5935/0103-5053.20140176

Google Scholar

[10] M.O. Vieira, W.F. Monteiro, B.S. Neto, R. Ligabue, V.V. Chaban, S. Einloft, Surface Active Ionic Liquids as Catalyst for CO2 Conversion to Propylene Carbonate, Catal. Lett. 48 (2018) 108–118.

DOI: 10.1007/s10562-017-2212-4

Google Scholar

[11] A. Buonerba, A.D. Nisi, A. Grassi, S. Milione, C. Capacchione, S. Vagin, B. Rieger, Novel iron(III) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to form cyclic carbonates, Catal. Sci. Technol. 5 (2015) 118-123.

DOI: 10.1039/c4cy01187b

Google Scholar

[12] A.S. Aquino, F.L. Bernard, J.V. Borges, L. Mafra, F.D. Vecchia, M.O. Vieira, R. Ligabue, M. Seferin, V.V. Chaban, E.J. Cabrita, S. Einloft, Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica, RSC Adv. 5 (2015) 64220-64227.

DOI: 10.1039/c5ra07561k

Google Scholar

[13] W.L. Dai, S.F. Yin, R. Guo, S.L. Luo, X. Du, C.T. Au, Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide Using Zn-Mg-Al Composite Oxide as High-efficiency Catalyst, Catal. Lett. 136 (2010) 35-44.

DOI: 10.1007/s10562-009-0198-2

Google Scholar

[14] D.B. Tkatchenko, F. Bernard, F. Demoisson, L. Plasseraud, S.R. Sanapureddy, Tin-Based Mesoporous Silica for the Conversion of CO2 into Dimethyl Carbonate, Chem. Sus. Chem. 4 (2011) 1316-1322.

DOI: 10.1002/cssc.201100034

Google Scholar

[15] Q. Ai, D. Yang, Y. Li, J. Hi, X. Wang, Z. Jiang, Highly efficient covalent immobilization of catalase on titanate nanotubes, Biochem. Eng. J. 83 (2014) 8-15.

DOI: 10.1016/j.bej.2013.11.021

Google Scholar

[16] X. Yang, L. Wu, L. Ma, X. Li, T. Wang, S. Liao, Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde, Catal. Commun. 59 (2015) 184-188.

DOI: 10.1016/j.catcom.2014.10.031

Google Scholar

[17] W.F. Monteiro, C.A.B. dos Santos, S. Einloft, M. Oberson, C.L.P. Carone, R. Ligabue, Preparation of Modified Titanate Nanotubes and Its Application in Polyurethane Nanocomposites, Macromol. Symp., 368 (2016) 93-97.

DOI: 10.1002/masy.201500146

Google Scholar

[18] R. Camposeco, S. Castillo, I.M. Centeno, J. Navarrete, V.R. Gonzales, Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes, Microporous Mesoporous Mater. 236 (2016) 235-243.

DOI: 10.1016/j.micromeso.2016.08.033

Google Scholar

[19] P.H. Hipólito, N.J. Flores, E.M. Klimova, A.G. Cortés, X. Bokhimi, A.L.E. Larcón, T.E. Klimanova, Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium, Catal. Today 250 (2015) 187-196.

DOI: 10.1016/j.cattod.2014.03.025

Google Scholar

[20] B. László, K. Baán, E. Varga, A. Oszkó, A. Erdöhelyi, Z. Kónya, J. Kiss, Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles, Appl. Catal. B 199 (2016) 473-484.

DOI: 10.1016/j.apcatb.2016.06.057

Google Scholar

[21] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[22] S. Sim, E.B. Cho, S. Chatterjee, H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure, Chem. Eng. J. 303 (2016) 64-72.

DOI: 10.1016/j.cej.2016.05.099

Google Scholar

[23] W.F. Monteiro, M.O. Vieira, A.S. Aquino, M.O. Souza, S. Einloft, R. Ligabue, CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires, Appl. Catal. A 544 (2017) 46-54.

DOI: 10.1016/j.apcata.2017.07.011

Google Scholar

[24] W. Liu, W. Sun, A.G.L. Borthwick, J. Ni, Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: Influence of pH, ionic strength and natural organic matter, Colloids Surf. A 434 (2013) 319-328.

DOI: 10.1016/j.colsurfa.2013.05.010

Google Scholar

[25] D.C. Carvalho, A.C. Oliveira, O.P. Ferreira, J.M. Filho, S.T. Cuapa, A.C. Oliveira, Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance, Chem. Eng. J 313 (2016) 1454-1467.

DOI: 10.1016/j.cej.2016.11.047

Google Scholar

[26] C.C. Tsai, L.C. Chen, T.F. Yeh, H. Teng, In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination, J. Alloys Compd, 546 (2013) 95-101.

DOI: 10.1016/j.jallcom.2012.08.081

Google Scholar

[27] S. Zhong, L. Liang, M. Liu, J. Sun, DMF and mesoporous Zn/SBA-15 as synergistic catalysts for the cycloaddition of CO2 to propylene oxide, J. CO2 Util. 9 (2015) 58-65.

DOI: 10.1016/j.jcou.2014.12.006

Google Scholar