Effect of Copper Substitution on the Electrical Transport Properties of La0.7Ba0.1Sr0.2Mn1-xCuxO 3 (X = 0 and 0.05) Manganites

Article Preview

Abstract:

A systematic investigation of polycrystalline La0.7Ba0.1Sr0.2Mn1-xCuxO3 (x = 0 and 0.5) manganite has been conducted with a view to understand the effect of copper substitution on the electrical transport properties and its correlation with structural and morphological properties. The structural and morphological properties of the sample without copper content (x = 0) have been reported previously, while in this research, the structural and morphological properties of sample with 5% copper content (x = 0.5) will be reported. Structural comparison with previous research shows that 5% copper content does not change the rhombohedral structure of the sample without copper content. Comparison of resistivity (ρ) data with the theoretical model shows that the electrical properties of both samples are well described using the electron-electron, electron-phonon, electron-magnon, and kondo-like spin dependent scattering theory. Furthermore, percolation theory which have been used in the model shows that ferromagnetic phase and paramagnetic phase coexisted in both samples. Through copper substitution, the overall resistivity of the sample decrease compared to the sample without copper content. Furthermore, percolation theory demonstrates that ferromagnetic phase of the sample is decreasing as copper ions substituted manganese ion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-337

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.-S. Zhao, W. X. Xianyu, B. H. Li, and Z. N. Qian, Magnetic properties and low-field magnetoresistance of La0.7Sr0.3Mn0.9M0.1O3 compounds (M=Al, Cr, Mn, Fe, Co, Ni, Cu, and Ga), J. Alloy Compd. 459 (2008) 29-34.

DOI: 10.1016/j.jallcom.2007.04.302

Google Scholar

[2] A. Coşkun, E. Taşarkuyu, A.E. Irmak, M. Acet, Y. Samancıoğlu, S. Aktűrk, Magnetic and electrical transport properties of La0.65Ca0.30Pb0.05Mn0.90Cu0.10O3 compounds: Thermal hysteresis, J. Alloy Compd. 622 (2015) 796-804.

DOI: 10.1016/j.jallcom.2014.10.182

Google Scholar

[3] M. Bejar, H. Feki, E. Dhahri, M. Ellouze, M. Balli, E. Hlil, Effects of substituting divalent by monovalent ion on the physical properties of La0.7Ca0.3-xKxMnO3 compounds, J. Magn. Magn. Mater. 316 (2007) e707-e709.

DOI: 10.1016/j.jmmm.2007.03.067

Google Scholar

[4] A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double Exchange Alone Does Not Explain the Resistivity ofLa1−xSrxMnO3, Phys. Rev. Lett. 74 (1995) 5144.

Google Scholar

[5] G. Mohamed Amara, Ah. Dhahri, J. Dhahri and E. K. Hlil, Correlation between magnetic and electric properties based on the critical behavior of resistivity and percolation model of La0.8Ba0.1Ca0.1MnO3 polycrystalline, RSC Advances 7 (2017) 10928-10938.

DOI: 10.1039/c6ra28839a

Google Scholar

[6] N. Mechi, B. Alzahrani, S. Hcini, M. L. Bouazizi, and A. Dhahri, Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite, Phase Transitions 91 (2018) 559–572.

DOI: 10.1080/01411594.2018.1424336

Google Scholar

[7] M. Abassi, Z. Mohamed, J. Dhahri, E.K. Hlil, Percolation model of La0.67−xYxBa0.23Ca0.1MnO3 composites, Chem. Phys. 436–437 (2014) 40-45.

DOI: 10.1016/j.chemphys.2014.03.015

Google Scholar

[8] W. Tong, B. Zhang, S. Tan, Y. Zhang, Probability of double exchange between Mn and Fe inLaMn1−xFexO3, Phys. Rev. B 70 (2004) 014422.

Google Scholar

[9] K. Ghosh, S.B. Ogale, R. Ramesh, R.L. Greene, T. Venkatesan, K.M. Gapchup, et al., Transition-element doping effects inLa0.7Ca0.3MnO3, Phys. Rev. B59 (1999) 533.

Google Scholar

[10] M.S. Kim, J.B. Yang, P.E. Parris, Q. Cai, X.D. Zhou, W.J. James, W.B. Yelon, D. Buddhikot, S.K. Malik, Structure, magnetic, and transport properties of Ti-substitutedLa0.7Sr0.3MnO3, J. Appl. Phys. 97 (2005) 10H714.

DOI: 10.1063/1.1860992

Google Scholar

[11] G. Li, H.-D. Zhou, S. Feng, X.-J. Fan, X.-G. Li, Z. Wang, Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites, J. Appl. Phys., 92 (2002) 1406-1410.

DOI: 10.1063/1.1490153

Google Scholar

[12] A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical properties in La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol gel and solid-state process. J. Alloys Compd. 28 (2017) 3648-3658.

DOI: 10.1016/j.jallcom.2016.09.223

Google Scholar

[13] M. Chebaane, R. Bellouz, M. Oumezzine, E. K. Hlil, and A. Fouzri, Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1−xCuxO3 influence on structural, magnetic and magnetocaloric effects, RSC Advances. 8 (2018) 7186-7195.

DOI: 10.1039/c7ra13244a

Google Scholar

[14] M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E.K. Hlil, Effect of indium substitution on structural, magnetic and magnetocaloric properties of La 0.5 Sm 0.1 Sr 0.4 Mn 1−x In x O 3 (0 ≤ x ≤ 0.1) manganites, J. Alloys Compd. 691 (2017) 578.

DOI: 10.1016/j.jallcom.2016.08.268

Google Scholar

[15] M.A. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger, M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite, J. Magn. Magn. Mater. 324 (2012) 2821.

DOI: 10.1016/j.jmmm.2012.04.017

Google Scholar

[16] S. Sergeenkov, H. Bougrine, M. Ausloos, R. Cloots, A sharp decrease of resistivity in La0.7Ca0.3Mn0.96Cu0.04O3: Evidence for Cu-assisted coherent tunneling of spin Polarons, JETP Lett. 69 (1999) 858-862.

DOI: 10.1134/1.568102

Google Scholar

[17] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance inLa1−xSrxMnO3, Phys. Rev. B51 (1995) 14103.

Google Scholar

[18] P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Low Temperature Magnetoresistance and the Magnetic Phase Diagram ofLa1−xCaxMnO3, Phys. Rev. Lett. 75 (1995) 3336.

Google Scholar

[19] G. Venkataiah, P. Venugopal Reddy, Electrical behavior of sol–gel prepared Nd0.67Sr0.33MnO3 manganite system, J. Magn. Magn. Mater. 285 (2005) 343-352.

DOI: 10.1016/j.jmmm.2004.07.051

Google Scholar

[20] A. Dhahri, M. Jemmali, E. Dhahri, and E. K. Hlil, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1−xCrxO3 (0.15, 0.20 and 0.25) manganite oxide, Dalton Trans. 44 (2015) 5620-5627.

DOI: 10.1039/c4dt03662j

Google Scholar