Enhanced Microwave Absorbing Capabilities of Multilayer Absorbers Based on BaFe12O19 and Fe3O4

Article Preview

Abstract:

In order to enhance a new microwave absorbing capabilities in the X-band frequency range, polycrystalline magnetic materials of BaFe12O19 barium hexaferrite were fabricated through conventional ceramic method and the Fe3O4 powder from iron sand were prepared through magnetic separation after milling process by using planetary ball mill. Microwave absorbing capabilities of multilayer absorbers, composed of BaFe12O19 barium hexaferrite and the Fe3O4 powder, with a total thickness of 10 mm, were investigated by a vector network analyzer (VNA) in the range of 8.2 –12.4 GHz. According to transmission line theory, reflection of microwave radiations from multilayer magnetic materials is calculated. The reflection loss (RL) strongly depends on thickness of multilayer absorbers and showed an optimal RL. Keywords : BaFe12O19, Fe3O4 powder, reflection loss, multilayer absorbers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

338-343

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jean-Michel Thomassin, Daniela Vuluga, Michaël Alexandre, Christine Jérôme, Isabel Molenberg, Isabelle Huynen, Christophe Detrembleur. A convenient route for the dispersion of carbon nanotubes in polymers: Application to the preparation of electromagnetic interference (EMI) absorbers. Polymer Vol. 53 (2012) 169 - 174.

DOI: 10.1016/j.polymer.2011.11.026

Google Scholar

[2] K. Khan and S. Rehman. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers. Mater. Res. Bull., vol. 50, p.454–461, (2014).

DOI: 10.1016/j.materresbull.2013.11.018

Google Scholar

[3] O. Akmana, H. Kavas, A. Baykal, M.S. Toprak, Ali Coruh, B. Aktas. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. Journal of Magnetism and Magnetic Materials 327 (2013) 151–158.

DOI: 10.1016/j.jmmm.2012.09.032

Google Scholar

[4] X. Liu, Z. Zhang, and Y. Wu. Absorption properties of carbon black/silicon carbide microwave absorbers. Composites: Part B 42 (2011) 326–329.

DOI: 10.1016/j.compositesb.2010.11.009

Google Scholar

[5] S. M. Abbas, R. P. R. C. Aiyar, and O. Prakash. Synthesis and microwave absorption studies of ferrite paint. Bull. Mater. Sci., Vol. 21, No. 4, August 1998, pp.279-282.

DOI: 10.1007/bf02744952

Google Scholar

[6] K. H. Tan, R. Ahmad, and M. R. Johan. Electromagnetic and microwave absorbing properties of amorphous carbon nanotubeecadmium selenide quantum dot hybrids. Materials Chemistry and Physics 139 (2013) 66-72.

DOI: 10.1016/j.matchemphys.2012.12.006

Google Scholar

[7] A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. Journal of Magnetism and Magnetic Materials 302 (2006) 429–435.

DOI: 10.1016/j.jmmm.2005.10.006

Google Scholar

[8] M. H. Shams, S. M. A. Salehi, and A. Ghasemi. Electromagnetic wave absorption characteristics of Mg–Ti substituted Ba-hexaferrite. Materials Letters 62 (2008) 1731–1733.

DOI: 10.1016/j.matlet.2007.09.073

Google Scholar

[9] P. A. Marino-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, and R. Lora-Serrano. Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite. Journal of Magnetism and Magnetic Materials 280 (2004) 214–220.

DOI: 10.1016/j.jmmm.2004.03.015

Google Scholar

[10] M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misha. A study on the behaviour of M-type barium hexagonal ferrite based microwave absorbing paints. Bull. Mater. Sci., Vol. 25, No. 2, April 2002, pp.169-173.

DOI: 10.1007/bf02706238

Google Scholar

[11] F. Pereira, M. Santos, R. Sohn, J. Almeida, A. Medeiros, M. Costa, and A. Sombra. Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range. Journal of Materials Science: Materials in Electronics, vol. 20, no. 5, p.408–417, (2009).

DOI: 10.1007/s10854-008-9744-8

Google Scholar

[12] V. Sunny, P. Kurian, P. Mohanan, P. A. Joy, and M. R. Anantharaman. A flexible microwave absorber based on nickel ferrite nanocomposite. J. Alloys Comp, vol. 489, no. 1, p.297–303, (2010).

DOI: 10.1016/j.jallcom.2009.09.077

Google Scholar

[13] K. Bobzin, T. Schlaefer, M. Bégard, M. Bruehl, G. Bolelli, L. Lusvarghi, D. Lisjak, A. Hujanen, P. Lintunen, U. Kanerva, T. Varis, M. Pasquale. Development of Ba-hexaferrite coatings for electromagnetic wave absorption applications. Surface & Coatings Technology 205 (2010) 1015–1020.

DOI: 10.1016/j.surfcoat.2010.03.060

Google Scholar

[14] Jasbir Singh, Charanjeet Singh, Dalveer Kaur, S. Bindra Narang, Rajshree Jotania, Rajat Joshi. Microwave absorbing characteristics in Co2+ and Al3+ substituted Ba0.5Sr0.5CoxAlxFe1222xO19 hexagonal ferrite. J. Mater Sci: Mater Electron (2017) 28: 2377–2384.

DOI: 10.1007/s10854-016-5807-4

Google Scholar

[15] S. G. Wang, S. D. Yoon, and C. Vittoria. Microwave and magnetic properties of double-sided hexaferrite films on (111) magnesium oxide substrates. Journal of Applied Physics 92 (2002) 11.

DOI: 10.1063/1.1517749

Google Scholar

[16] Pallab Bhattacharya, Saptarshi Dhibar, Goutam Hatui, Avinandan Mandal, Tanya Dasb and Chapal K. Das. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv., 2014, 4,17039.

DOI: 10.1039/c4ra00448e

Google Scholar

[17] C. L. Hou, T. H. Li, T. K. Zhao, H. G. Liu, L. H. Liu, and W. J. Zhang. Electromagnetic wave absorbing properties of multi-wall carbon nanotube/Fe3O4 hybrid materials. New Carbon Materials, 2013, 28(3):184–190.

DOI: 10.1016/s1872-5805(13)60075-x

Google Scholar

[18] E. Handoko, S. Iwan, S. Budi, B. S. Anggoro, A. M. Mangasi, M. Randa, J. Zulkarnain, C. Kurniawan, N. Sofyan, and M. Alaydrus. Magnetic and microwave absorbing properties of BaFe12−2xCoxZnxO19 (x=0.0; 0.2; 0.4; 0.6) nanocrystalline. Mater. Res. Express 5 (2018) 064003.

DOI: 10.1088/2053-1591/aac4d7

Google Scholar

[19] S. Nor, A. Rusly, K. Amin, I. Ismail, Z. Abbas, and Z. Awang. Microwave absorption properties of single- and double-layer coatings based on strontium hexaferrite and graphite nanocomposite. Journal of Materials Science: Materials in Electronics, 2018. https://doi.org/10.1007/s10854-018-9535-9.

DOI: 10.1007/s10854-018-9535-9

Google Scholar

[20] Erfan Handoko, Mangasi A.M., Iwan S, Maulana Randa, Mudrik Alaydrus. Measurement of Complex Permittivity and Permeability ofHexagonal Ferrite Composite Material U sing a Waveguide in Microwave Band. 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications," p.28–30, (2016).

DOI: 10.1109/icramet.2016.7849576

Google Scholar