The Effect of Freezing-Thawing Route Number on Magnetic Properties and Nanostructural of Fe3O4/ Carboxymethyl Cellulose/Polyvinyl Alcohol Magnetic Hydrogel

Article Preview

Abstract:

Fe3O4/Carboxymethyl Cellulose (CMC)/Polyvinyl Alcohol (PVA) hydrogel magnetic was successfully synthesized by using the freezing-thawing process. Meanwhile, the filler of Fe3O4 nanoparticles was successfully fabricated by co-precipitation method. Magnetic hydrogel and Fe3O4 was revealed by using X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Vibrating Sample Magnetometer (VSM), and Small Angle X-ray Scattering (SAXS) to investigate the content of elements in the Fe3O4 filler, the functional group network of samples, magnetic properties of magnetic hydrogel and Fe3O4, and nanostructure of magnetic hydrogel, respectively. The magnetic properties of magnetic hydrogel decreased as the decrease in the particle sizes of the Fe3O4 nanoparticles. On the other hand, the saturation magnetization of magnetic hydrogel decreased as the freezing-thawing route increased in number. This condition can be concluded that the distribution of the Fe3O4 filler in CMC/PVA magnetic hydrogel was more effective when the route number of freezing-thawing reached the maximum process (7x processes). Moreover, the nanostructure of magnetic hydrogel revealed the composition of the crystalline phase of CMC/PVA hydrogel of approximately 6 nm. By these characteristics, Fe3O4/CMC/PVA magnetic hydrogel is potential to be used as smart gel such as artificial muscle, switch-of, and the others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-351

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Cooperstein, B. M. Bluestein, H. E. Canavan, Synthesis and optimization of fluorescent poly (N-isopropyl acrylamide)-coated surfaces by atom transfer radical polymerization for cell culture and detachment, Biointerphases 10 (2015) 019001.

DOI: 10.1116/1.4894530

Google Scholar

[2] N. Roy, N. Saha, T. Kitano, P. Saha, Biodegradation of PVP–CMC hydrogel film: A useful food packaging material, Carbohydr. Polym. 89 (2012) 346–353.

DOI: 10.1016/j.carbpol.2012.03.008

Google Scholar

[3] S. R. Muppalla, S. R. Kanatt, S. P. Chawla, A. Sharma, Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat, Food Packag. Shelf Life 2 (2014) 51–58.

DOI: 10.1016/j.fpsl.2014.07.002

Google Scholar

[4] A. Gregorova, N. Saha, T. Kitano, P. Saha, Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging, Carbohydr. Polym. 117 (2015) 559–568.

DOI: 10.1016/j.carbpol.2014.10.009

Google Scholar

[5] R. M. Cornell, U. Schwertmann, Electronic, Electrical and Magnetic Properties and Colour, in The Iron Oxides, Wiley-VCH Verlag GmbH & Co. KGaA, (2004) 111–137.

Google Scholar

[6] M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu, Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids Surf. Physicochem. Eng. Asp. 212 (2003) 219–226.

DOI: 10.1016/s0927-7757(02)00305-9

Google Scholar

[7] C. Hassan, N. Peppas, Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods, in Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites, Springer Berlin Heidelberg, 153 (2000) 37–65.

DOI: 10.1007/3-540-46414-x_2

Google Scholar

[8] J. Thomas, A. Lowman, M. Marcolongo, Novel associated hydrogels for nucleus pulposus replacement., J. Biomed. Mater. Res. A 67 (2003) 1329–1337.

DOI: 10.1002/jbm.a.10119

Google Scholar

[9] N. A. Peppas, S. L. Wright, Solute Diffusion in Poly(vinyl alcohol)/Poly(acrylic acid) Interpenetrating Networks, Macromolecules 29 (1996) 8798–8804.

DOI: 10.1021/ma9613392

Google Scholar

[10] A. Doyan, K. Khalilurrahman, S. Susilawati, Sintesis dan Uji FTIR Barium M-Hexaferrite dengan Doping Logam Mn, J. Pendidik. Fis. Dan Teknol. 1 (2017) 235–238.

DOI: 10.29303/jpft.v1i4.264

Google Scholar

[11] O.R. R. S. F. Thermoplastic, E. N. B. R. NBR, Sifat fisika dan analisis gugus fungsi karet seal o-ring dari bahan termoplastik elastomer nitrile butadiene rubber (NBR) dan polyvinyl chloride (PVC), (2013).

DOI: 10.20543/mkkp.v29i1.215

Google Scholar

[12] H. S. Mansur, R. L. Oréfice, A. A. P. Mansur, Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer 45 (2004) 7193–7202.

DOI: 10.1016/j.polymer.2004.08.036

Google Scholar

[13] T. M. G. Ginanjar, S. Amanda, C. Syari, Model baru advanced packaging melalui mekanisme aktif oxygen scavenging dari chitosan untuk kemasan suplemen pangan kecerdasan berbasis asam lemak omega-3 minyak ikan (2014).

Google Scholar

[14] Z. L. Liu, Y. J. Liu, K. L. Yao, Z. H. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles, J. Mater. Synth. Process. 10 (2002) 83–87.

Google Scholar

[15] A. V. Ryzhkov, P. V. Melenev, M. Balasoiu, Y. L. Raikher, Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy, J. Chem. Phys. 145 (2016) 074905.

DOI: 10.1063/1.4961299

Google Scholar

[16] E. G. R. Putra, B. S. Seong, E. Shin, A. Ikram, S. A. Ani, Darminto, Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study, J. Phys. Conf. Ser. 247 (2010) 012028.

DOI: 10.1088/1742-6596/247/1/012028

Google Scholar

[17] J. Teixeira, Small-angle scattering by fractal systems, J. Appl. Crystallogr. 21 (1988) 781–785.

DOI: 10.1107/s0021889888000263

Google Scholar

[18] Sunaryono, A. Taufiq, E.G.R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Rugmai, S. Soontaranon, M. Zainuri, Triwikantoro, S. Pratapa, Darminto, Small-Angle X-Ray Scattering Study on PVA/Fe3O4 Magnetic Hydrogels, Nano 11 (2016) 1650027.

DOI: 10.1142/s1793292016500272

Google Scholar

[19] A. Priola, A. Di Gianni, R. Bongiovanni, S.G. Starodubtsev, S.S. Abramchuck, S.N. Polyakov, V.V. Volkov, E.V. Schtykova, K.A. Dembo, Effect of the swelling degree on the formation of magnetite nanoparticles in hydrogels, Eur. Polym. J. 46 (2010) 2105–2111.

DOI: 10.1016/j.eurpolymj.2010.09.008

Google Scholar

[20] R. V. Ramanujan, L. L. Lao, The mechanical behavior of smart magnet–hydrogel composites, Smart Mater. Struct. 15 (2006) 952.

DOI: 10.1088/0964-1726/15/4/008

Google Scholar

[21] M. Zrinyi, L. Barsi, A. Büki, Direct observation of discrete and reversible shape transition in magnetic field sensitive polymer gels, Print. On (2005) 1–6.].

Google Scholar

[22] Sunaryono, A. Taufiq, Munaji, B. Indarto, Triwikantoro, M. Zainuri, Darminto, Magneto-elasticity in hydrogels containing Fe3O4 nanoparticles and their potential applications, (2013) 53–56.

DOI: 10.1063/1.4820992

Google Scholar

[23] M. Czaun, L. Hevesi, M. Takafuji, H. Ihara, A novel approach to magneto-responsive polymeric gels assisted by iron nanoparticles as nano cross-linkers, Chem. Commun. (2008) 2124–2126.

DOI: 10.1039/b717721f

Google Scholar