Effect of Modified SiO2 on the Hydrophobic Properties as Self-Cleaning Materials

Article Preview

Abstract:

In this work, hydrophobic of modified SiO2 coating for self cleaning material were prepared by dip-coating methods and solvothermal manual. SiO2 was successfully prepared from silica sand by purified followed sol-gel methods. Tetraetoxysilane (TEOS) and Hexamethyldisilanze (HMDS) were used as surface chemical modification agents with varied mass of SiO2, which were 1, 2, 3, and 4 g. X-ray fluorescence spectrometer (XRF) , X-ray powder diffraction (XRD), Particle size analyzer (PSA), Ultraviolet–visible spectrophotometer (UV-Vis), and Water contact angle (WCA) were employed to investigate the element composition, crystal structure, size of particles, transparency, and hydrophobicity of coating. The results indicated that modified SiO2 coatings has hydrophobic feature as self cleaning material (WCA > 90˚) for indium tin oxide (ITO) glass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Graria, A. Et Taouil, L. Dhouibi, C.C. Buron, F. Lallemand, Multilayered polypyrrole–SiO2 composite coatings for functionalization of stainless steel: Characterization and corrosion protection behavior, Progress in Organic Coatings 88 (2015), 48–53.

DOI: 10.1016/j.porgcoat.2015.06.019

Google Scholar

[2] I.A. Rahman and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review, Journal of Nanomaterials 2012 (2012), Article ID 132424, 15 pages.

DOI: 10.1155/2012/132424

Google Scholar

[3] A.F. Irwati and M. Zainuri, Effect of Heat Treatment Temperature on Hydrofobic Composite Coatings PDMS / SiO2 phases cristobalite silica, ITS Journal of Science and Arts 5 (2016) 1-5.

Google Scholar

[4] B, Karthick and R. Maheshwari, Lotus-Inspired Nanotechnology Applications, Reson 13 (2008) 1141-1145.

DOI: 10.1007/s12045-008-0113-y

Google Scholar

[5] Munasir, A. Sulton, Triwikantoro, M. Zainuri, Darminto, Synthesis of Silica Nanopowder from Slopeng Natural Sands via Alkalifussion Route, AIP Conf. Proc. 1555 (2013) 28.

DOI: 10.1063/1.4820986

Google Scholar

[6] X. Gao and L. Jiang,Water-repellent legs of water striders, Nature 432 (2004) 36-37.

DOI: 10.1038/432036a

Google Scholar

[7] Y. Xu, C. Peng, C. Xin, J. Wu, Preparation of silica antireflective films for solar energy application, Mater. Lett. 94 (2013) 89-91.

DOI: 10.1016/j.matlet.2012.12.013

Google Scholar

[8] S. Cai, Q. Xue, B. Xia, J. Yang, H. Lv, H, Yan, B. Jiang, Hydrophobic–oleophobic antireflective film with excellent optical property prepared by simple sol–gel route, Mater. Lett.156 (2015) 14-16.

DOI: 10.1016/j.matlet.2015.04.110

Google Scholar

[9] V.G. Parale, D.B. Mahadik, M.S. Kavale, S. A. Mahadik , A. Venkateswara Rao, Steven Mullens, Sol–gel preparation of PTMS modified hydrophobic and transparent silica coatings, J. Porous Mater. 20 (4) (2012) 733-739.

DOI: 10.1007/s10934-012-9648-0

Google Scholar

[10] V. Purcar, I. Stamatin, O. Cinteza, C. Petcu, V. Raditoiu, M. Ghiurea, T. Miclaus, A. Andronie, Fabrication of hydrophobic and antireflective coatings based on hybrid silica films by sol–gel process, Surf. Coatings Technol. 206 (2012) 4449–4454.

DOI: 10.1016/j.surfcoat.2012.04.094

Google Scholar

[11] K. Lee, S. Lyu, S. Lee, Y.S. Kim, W. Hwang, Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nano fibers array structures, Appl. Surf. Sci. 256 (22) (2010) 6729–6735.

DOI: 10.1016/j.apsusc.2010.04.081

Google Scholar

[12] H.M. Kim, S. Sohn, J.S. Ahn, Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods, Surf. Coat. Technol. 228 (2013) S389–S392.

DOI: 10.1016/j.surfcoat.2012.05.085

Google Scholar

[13] B.Wang, Y. Zhang, L. Shi, J. Li and Z. Guo, Advances in the theory of superhydrophobic surfaces, Journal of Materials Chemistry 22 (2012) 20112-20127.

Google Scholar

[14] Cassie, A. B. D. dan S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar

[15] P.Roach, N.J. Shirtcliffe and M.I. Newton, Progess in superhydrophobic surface development, SoftMatter 4 (2008) 224-240.

DOI: 10.1039/b712575p

Google Scholar

[16] R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry 28 (1936) 988-994.

DOI: 10.1021/ie50320a024

Google Scholar

[17] S. Wang, Y. Li, X. Fei, M. Sun, C. Zhang, Q. Li, Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle, J. Colloid Interface Sci. 359 (2011) 380–388.

DOI: 10.1016/j.jcis.2011.04.004

Google Scholar

[18] J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Transparent superhydrophobic films based on silica nanoparticles, Langmuir 23 (2007) 7293-7298.

DOI: 10.1021/la070159q

Google Scholar

[19] H. Ogihara, J. Xie, J. Okagaki, T. Saji, Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency, Langmuir 28 (2012) 4605-4608.

DOI: 10.1021/la204492q

Google Scholar