Fate and Transport of PPCPs in the Environment: A Review on Occurrences, Sources, and Cases

Article Preview

Abstract:

Pharmaceuticals and personal care products (PPCPs) in the environment have been intensively studied recently. These compounds can cause serious problem in environment. Intake of these compounds in low concentration can threat human health due to its reactivity and chemical composition. Occurrences of PPCPs in environments are important to recognize in order to draw broad understanding on which mitigation of PPCPs can be deliberated. This review provides general information about occurrence of PPCPs. Moreover, sources of PPCPs in the environment are comprehensively explained. The fate and transport mechanisms of PPCPs are summarized based on important studies of selected groups of PPCPs which conducted through years based on several previous study cases are mentioned and elaborated to pinpoint the existence of these pollutants. In the end, identification of the current research limitation and further recommendations are proposed for improving mitigation process and addressing further research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-188

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Barceló, and M. Petrovic: Pharmaceuticals and personal care products (PPCPs) in the environment. Anal and Bioanal Chem Vol. 387 (4) (2007), pp.1141-1142.

DOI: 10.1007/s00216-006-1012-2

Google Scholar

[2] P.J. Ferguson, et al: Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan. Sci Tot Envi 458-460 (2013), pp.187-196.

DOI: 10.1016/j.scitotenv.2013.04.024

Google Scholar

[3] M. Parolini, A. Pedriali, and A. Binelli: Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Arch of envi contam and toxicol. Vol. 64 (2013), p.439.

DOI: 10.1007/s00244-012-9847-3

Google Scholar

[4] L. Dodgen, et al: Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Envi poll, Vol. 182 (2013), pp.150-156.

DOI: 10.1016/j.envpol.2013.06.038

Google Scholar

[5] A.J. Ramirez, et al: Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Envi Toxicol and Chem Vol. 28 (2009), pp.2587-2597.

Google Scholar

[6] H. Bouwer: Adverse effects of sewage irrigation on plants, crops, soil and groundwater. (Water Reuse for Irrigation: Agriculture, Landscapes and Turf Grass, 2005).

DOI: 10.1201/9780203499405.ch8

Google Scholar

[7] B.J. Richardson, P.K.S. Lam, and M. Martin: Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Mar Poll Bull Vol. 50 (2005), pp.913-920.

DOI: 10.1016/j.marpolbul.2005.06.034

Google Scholar

[8] SE: Cocio-economic evaluation arising from a proposal for risk reduction measures related to restrictions on 1,4 dichlorobenzene. (Directorate General Enterprise and Industry, European Commission. 2010).

Google Scholar

[9] D.L. Blanset, J. Zhang and M. Robson: Probabilistic estimates of lifetime daily doses from consumption of drinking water containing trace levels of N, N-diethyl-meta-toluamide (DEET), triclosan, or acetaminophen and the associated risk to human health. Human and Eco Risk Asses Vol. 13 (3) (2007), pp.615-631.

DOI: 10.1080/10807030701341209

Google Scholar

[10] R. Lappano, et al: Recent advances on the stimulatory effects of metals in breast cancer. Mol and cell endoc Vol. 457 (2017), pp.49-56.

Google Scholar

[11] D. Beyersmann: Effects of carcinogenic metals on gene expression. Toxicol lett. Vol. 127(1-3) (2002), pp.63-68.

Google Scholar

[12] H.N. Hong, et al: Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR. Chemosphere. Vol. 67 (11) (2007), pp.2115-2121.

DOI: 10.1016/j.chemosphere.2006.12.090

Google Scholar

[13] A.J. Ebele, M. Abou-Elwafa Abdallah, and S. Harrad: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Em Contams Vol. 3 (2017), pp.1-16.

DOI: 10.1016/j.emcon.2016.12.004

Google Scholar

[14] Q. Sui, et al: Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Em Contams Vol. 1 (2015), pp.14-24.

Google Scholar

[15] S.K. Behera, et al: Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci of the Tot Envi Vol. 409 (2011), pp.4351-4360.

DOI: 10.1016/j.scitotenv.2011.07.015

Google Scholar

[16] P.M. Bradley, et al: Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. Envi poll Vol. 193 (2014), pp.173-180.

Google Scholar

[17] J.E. Drewes, et al: Fate of pharmaceuticals during ground water recharge. Groundwater Monitor & Remed Vol. 23 (2003), pp.64-72.

DOI: 10.1111/j.1745-6592.2003.tb00684.x

Google Scholar

[18] S.E. Musson, and T.G. Townsend: Pharmaceutical compound content of municipal solid waste. Journal of Hazardous Materials Vol. 162 (2009), pp.730-735.

DOI: 10.1016/j.jhazmat.2008.05.089

Google Scholar

[19] K. Kuroda, et al: Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Envi sci & tech Vol. 46 (2012), pp.1455-1464.

DOI: 10.1021/es202059g

Google Scholar

[20] J. Dsikowitzky, et al: Exceptionally high concentrations of the insect repellent N,N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Envi Chem Lett Vol 12 (3) (2014), pp.407-411.

DOI: 10.1007/s10311-014-0462-6

Google Scholar

[21] L. Dsikowitzky, et al: First comprehensive screening of lipophilic organic contaminants in surface waters of the megacity Jakarta, Indonesia. Mar Poll Bull Vol. 110 (2) (2016), pp.654-664.

DOI: 10.1016/j.marpolbul.2016.02.019

Google Scholar

[22] R. Jindal: Occurrence of pharmaceuticals and personal care products in municipal wastewater treatment plants and receiving water bodies in Bangkok, Thailand. in Proceedings of the International Conference on Applied Science and Health. (2017).

Google Scholar

[23] C.S. McArdell, et al: Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Envi Sci & Tech Vol. 37 (2003), pp.5479-5486.

DOI: 10.1021/es034368i

Google Scholar

[24] X. Hu, Q. Zhou, and Y. Luo: Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Envi Poll Vol. 158 (2010), pp.2992-2998.

DOI: 10.1016/j.envpol.2010.05.023

Google Scholar

[25] M. Rabiet, et al: Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Envi sci & technol Vol. 40 (2006), pp.5282-5288.

DOI: 10.1021/es060528p

Google Scholar

[26] P. Guerra, et al: Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds. Sci of the Tot Envi Vol. 473 (2014), pp.235-243.

Google Scholar

[27] B.T. Ferrari et al: Ecotoxicological impact of pharmaceuticals found in treated wastewaters. Ecotoxicol and Envi Saf Vol. 55 (2003), pp.359-370.

Google Scholar

[28] M. Oetken, et al: Effects of Pharmaceuticals on Aquatic Invertebrates. Part I. The Antiepileptic Drug Carbamazepine. Arch of Envi Contam and Toxicol Vol. 49 (2005), pp.353-361.

DOI: 10.1007/s00244-004-0211-0

Google Scholar

[29] R. Loos, et al: Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water research Vol. 44 (2010), pp.4115-4126.

DOI: 10.1016/j.watres.2010.05.032

Google Scholar

[30] P.M. Bradley, et al: Biotransformation of caffeine, cotinine, and nicotine in stream sediments: implications. Envi Tox & Chem Vol. 26(2007), pp.1116-1121.

Google Scholar

[31] M.T Moore, et al: Assessing Caffeine as an Emerging Environmental Concern Using Conventional Approaches. Arch of Envi Contam and Toxicol Vol. 54(2008), pp.31-35.

DOI: 10.1007/s00244-007-9059-4

Google Scholar

[32] K.L. Del Rosario, et al: Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer. Sci of The Tot Envi Vol. 487 (2014), pp.216-223.

DOI: 10.1016/j.scitotenv.2014.03.135

Google Scholar

[33] M. Zemann, et al: Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan. Envi Poll Vol. 198 (2015), pp.133-143.

DOI: 10.1016/j.envpol.2014.11.033

Google Scholar

[34] M. Silvia Díaz-Cruz et al: Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC Trends in Anal Chem Vol. 27(2008), pp.873-887.

DOI: 10.1016/j.trac.2008.08.012

Google Scholar

[35] Y. Cabeza, et al: Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of hazardous materials Vol. 239 (2012), pp.32-39.

DOI: 10.1016/j.jhazmat.2012.07.032

Google Scholar

[36] A.K Sarmah, M.T. Meyer, and A.B. Boxall: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere Vol. 65 (2006), pp.725-759.

DOI: 10.1016/j.chemosphere.2006.03.026

Google Scholar

[37] D. Cheng et al: Anaerobic membrane bioreactors for antibiotic wastewater treatment: performance and membrane fouling issues. Biores technol (2018).

Google Scholar

[38] L. Tong, et al: Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere Vol. 74(2009), pp.1090-1097.

DOI: 10.1016/j.chemosphere.2008.10.051

Google Scholar

[39] B.V. Laws, et al: Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge. Sci of the Tot Envi Vol. 409 (2011), pp.1087-1094.

DOI: 10.1016/j.scitotenv.2010.11.021

Google Scholar

[40] Y. Luo, et al: Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Envi Sci & Tech Vol. 45(2011), pp.1827-1833.

DOI: 10.1021/es104009s

Google Scholar

[41] P.A. Blackwell, P. Kay, and A.B.A. Boxall: The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere Vol. 67 (2007), pp.292-299.

DOI: 10.1016/j.chemosphere.2006.09.095

Google Scholar

[42] J. Schwaiger, et al: Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aqua Toxicol Vol. 68 (2004), pp.141-150.

DOI: 10.1016/j.aquatox.2004.03.014

Google Scholar

[43] D. Bendz, et al: Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Jour of Haz Matr Vol. 122 (2005), pp.195-204.

DOI: 10.1016/j.jhazmat.2005.03.012

Google Scholar

[44] M. Stumpf, et al: Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci of the tot envi Vol. 225(1999), pp.135-141.

DOI: 10.1016/s0048-9697(98)00339-8

Google Scholar

[45] S. Suárez, et al: How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Reviews in Envi Sci and Bio/Tech Vol. 7 (2008), pp.125-138.

DOI: 10.1007/s11157-008-9130-2

Google Scholar

[46] M. Carballa, et al: Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research Vol. 38 (2004), pp.2918-2926.

DOI: 10.1016/j.watres.2004.03.029

Google Scholar

[47] D. Ashton, M. Hilton, and K. Thomas: Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Tot Envi Vol. 333 (2004), pp.167-184.

DOI: 10.1016/j.scitotenv.2004.04.062

Google Scholar

[48] C. Tixier, et al: Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Envi sci & tech Vol. 37 (2003), pp.1061-1068.

DOI: 10.1021/es025834r

Google Scholar

[49] A.K Dhingra, et al: Synthesis and Anti-Inflammatory Activity of Some O-Propargylated-N-acetylpyrazole Derived from 1,3-Diarylpropenones. Int Jour of Med Chem Vol. 20 (2016): p.3156593.

DOI: 10.1155/2016/3156593

Google Scholar

[50] G. Arye, I. Dror, and B. Berkowitz: Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils. Chemosphere Vol. 82 (2011), pp.244-252.

DOI: 10.1016/j.chemosphere.2010.09.062

Google Scholar

[51] C. Girardi, et al: Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil — Use and limits of data obtained from aqueous systems for predicting their fate in soil. Sci Tot Envi Vol. 444 (2013), pp.32-42.

DOI: 10.1016/j.scitotenv.2012.11.051

Google Scholar

[52] D. Calderón-Preciado, et al: Development of an analytical procedure for the determination of emerging and priority organic pollutants in leafy vegetables by pressurized solvent extraction followed by GC–MS determination. Anal and bioanal chem Vol. 394 (2009), pp.1319-1327.

DOI: 10.1007/s00216-009-2669-0

Google Scholar

[53] S. Oh, W.S. Shin, and H.T. Kim: Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment. Envi Sci and Poll Res Inter Vol. 23 (2016), p.22882.

DOI: 10.1007/s11356-016-7503-6

Google Scholar

[54] C. Stoker, et al: Sex reversal effects on Caiman latirostris exposed to environmentally relevant doses of the xenoestrogen bisphenol A. General & comp endo Vol. 133 (2003), pp.287-296.

DOI: 10.1016/s0016-6480(03)00199-0

Google Scholar

[55] A. Blom, et al: Effects of xenoestrogenic environmental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Arc Envi Contam & Toxi Vol. 34 (1998), pp.306-310.

DOI: 10.1007/s002449900322

Google Scholar

[56] H. Fromme, et al: Occurrence of phthalates and bisphenol A and F in the environment. Water Research Vol. 36(2006), pp.1429-1438.

Google Scholar

[57] G. D'Ascenzo, et al: Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Tot Envi Vol. 302(2003), pp.199-209.

Google Scholar

[58] D.A. Chin: Water-quality engineering in natural systems: fate and transport processes in the water environment. (John Wiley & Sons. 2012).

Google Scholar

[59] Z. Fan, et al: Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere Vol. 67(2007), pp.886-895.

DOI: 10.1016/j.chemosphere.2006.11.040

Google Scholar

[60] N. Goeppert, I. Dror, and B. Berkowitz: Detection, fate and transport of estrogen family hormones in soil. Chemosphere Vol. 95 (2014), pp.336-345.

DOI: 10.1016/j.chemosphere.2013.09.039

Google Scholar

[61] J. Shi, et al: Microbial degradation of estrogens using activated sludge and night soil-composting microorganisms. Wat Sci Tech Vol. 50 (2004), pp.153-159.

DOI: 10.2166/wst.2004.0510

Google Scholar

[62] J. Shi, et al: Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research Vol. 38 (2004), pp.2323-2330.

DOI: 10.1016/j.watres.2004.02.022

Google Scholar

[63] Y.X. Ren, et al: Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Research Vol. 41 (2007), pp.3089-3096.

DOI: 10.1016/j.watres.2007.04.028

Google Scholar

[64] C. Christiansen: X-ray contrast media—an overview. Toxicol Vol. 209(2005), pp.185-187.

Google Scholar

[65] I. Böhm: Iodinated X-ray contrast media in aquatic environment in general and in drinking water in particular. Chemosphere Vol. 194 (2018), pp.28-29.

DOI: 10.1016/j.chemosphere.2017.11.154

Google Scholar

[66] T. Matsushita, et al: Changes in mutagenicity and acute toxicity of solutions of iodinated X-ray contrast media during chlorination. Chemosphere Vol. 135 (2015), pp.101-107.

DOI: 10.1016/j.chemosphere.2015.03.082

Google Scholar

[67] T.A. Ternes and R. Hirsch: Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Envi sci & tech Vol. 34(2000), pp.2741-2748.

DOI: 10.1021/es991118m

Google Scholar

[68] T. Steger-Hartmann, R. Länge, and H. Schweinfurth: Environmental Risk Assessment for the Widely Used Iodinated X-Ray Contrast Agent Iopromide (Ultravist). Ecotox and Envi Safety Vol. 42 (1999), pp.274-281.

DOI: 10.1006/eesa.1998.1759

Google Scholar

[69] W. Kalsch, Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Science of The Total Environment Vol. 225 (1999), pp.143-153.

DOI: 10.1016/s0048-9697(98)00340-4

Google Scholar

[70] T. Steger-Hartmann, et al: Investigations into the environmental fate and effects of iopromide (ultravist).Water Resc Vol. 36 (2002): pp.266-274.

DOI: 10.1016/s0043-1354(01)00241-x

Google Scholar

[71] E. Hapeshi et al: Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban wastewater. Envi Sci and Poll Res Vol. 20 (2013), pp.3592-3606.

DOI: 10.1007/s11356-013-1605-1

Google Scholar

[72] S. Pérez and D. Barceló, Fate and occurrence of X-ray contrast media in the environment. Anal and Bioanal Chem Vol. 387(2007), pp.1235-1246.

DOI: 10.1007/s00216-006-0953-9

Google Scholar

[73] D. Löffler et al: Environmental fate of pharmaceuticals in water/sediment systems. Envi Sci & Tech Vol. 39 (2005), pp.5209-5218.

DOI: 10.1021/es0484146

Google Scholar