[1]
Association, T.P.C. Revised Estimates of Cement Production. 2017; Available from: http://www.cement.org/newsroom.
Google Scholar
[2]
Damtoft, J.S., et al., Sustainable development and climate change initiatives. Cement and Concrete Research, 2008. 38(2): pp.115-127.
DOI: 10.1016/j.cemconres.2007.09.008
Google Scholar
[3]
Malhotra, V.M., Introduction: Sustainable development and concrete technology, ACI Board Group on Sustainable Development. ACI Concrete International, 2002. 24(7): p.22.
Google Scholar
[4]
Mehta, P.K., Reducing the environmental impact of concrete. ACI Concrete International, 2001. 23(10): pp.61-66.
Google Scholar
[5]
Benhelal, E., et al., Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 2013. 51(Supplement C): pp.142-161.
DOI: 10.1016/j.jclepro.2012.10.049
Google Scholar
[6]
Tharakan, J.L.P., D. Macdonald, and X. Liang, Technological, economic and financial prospects of carbon dioxide capture in the cement industry. . Energy Policy 2013. 61: pp.1377-1387.
DOI: 10.1016/j.enpol.2013.05.082
Google Scholar
[7]
Elchalakani, M., T. Aly, and E. Abu-Aisheh, Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 2014. 1: pp.10-24.
DOI: 10.1016/j.cscm.2013.11.001
Google Scholar
[8]
Hooton, R.D., Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete. Canadian Journal of Civil Engineering, 2000. 27(4): pp.754-760.
DOI: 10.1139/l00-014
Google Scholar
[9]
Rashad, A.M., An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. Journal of Cleaner Production, 2015. 93(Supplement C): pp.47-55.
DOI: 10.1016/j.jclepro.2015.01.031
Google Scholar
[10]
Duran Atiş, C. and C. Bilim, Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Building and Environment, 2007. 42(8): pp.3060-3065.
DOI: 10.1016/j.buildenv.2006.07.027
Google Scholar
[11]
Güneyisi, E. and M. Gesoğlu, A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Materials and Structures, 2008. 41(3): pp.479-493.
DOI: 10.1617/s11527-007-9260-y
Google Scholar
[12]
Oner, A. and S. Akyuz, An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 2007. 29(6): pp.505-514.
DOI: 10.1016/j.cemconcomp.2007.01.001
Google Scholar
[13]
Durán-Herrera, A., et al., Evaluation of sustainable high-volume fly ash concretes. Cement and Concrete Composites, 2011. 33(1): pp.39-45.
DOI: 10.1016/j.cemconcomp.2010.09.020
Google Scholar
[14]
Şahmaran, M., et al., Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 2008. 30(10): pp.872-879.
DOI: 10.1016/j.cemconcomp.2008.07.001
Google Scholar
[15]
Younsi, A., et al., Performance-based design and carbonation of concrete with high fly ash content. Cement and Concrete Composites, 2011. 33(10): pp.993-1000.
DOI: 10.1016/j.cemconcomp.2011.07.005
Google Scholar
[16]
Aghaeipour, A. and M. Madhkhan, Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Construction and Building Materials, 2017. 141: pp.533-541.
DOI: 10.1016/j.conbuildmat.2017.03.019
Google Scholar
[17]
Choi, Y.C., J. Kim, and S. Choi, Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag. Construction and Building Materials, 2017. 137: pp.96-103.
DOI: 10.1016/j.conbuildmat.2017.01.076
Google Scholar
[18]
Wainwright, P.J. and N. Rey, The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete. Cement and Concrete Composites, 2000. 22(4): pp.253-257.
DOI: 10.1016/s0958-9465(00)00024-x
Google Scholar
[19]
Alonso, M.C., et al., Ternary mixes with high mineral additions contents and corrosion related properties. Materials and Corrosion, 2012. 63(12): pp.1078-1086.
DOI: 10.1002/maco.201206654
Google Scholar
[20]
Demirboğa, R., İ. Türkmen, and M.B. Karakoç, Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 2004. 34(12): pp.2329-2336.
DOI: 10.1016/j.cemconres.2004.04.017
Google Scholar
[21]
El-Chabib, H. and A. Syed, Properties of Self-Consolidating Concrete made with High volume of Supplementary Cementitious Materials. Materials in Civil Engineering, 2013. 25(11): pp.1579-1586.
DOI: 10.1061/(asce)mt.1943-5533.0000733
Google Scholar
[22]
Jeong, Y., et al., Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Construction and Building Materials, 2015. 95: pp.96-107.
DOI: 10.1016/j.conbuildmat.2015.07.158
Google Scholar
[23]
Kuder, K., et al., Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Construction and Building Materials, 2012. 34: pp.285-295.
DOI: 10.1016/j.conbuildmat.2012.02.034
Google Scholar
[24]
Shaikh, F.U.A. and S.W.M. Supit, Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and Building Materials, 2015. 99: pp.208-225.
DOI: 10.1016/j.conbuildmat.2015.09.030
Google Scholar
[25]
Shaikh, F.U.A., S.W.M. Supit, and P.K. Sarker, A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials & Design, 2014. 60: pp.433-442.
DOI: 10.1016/j.matdes.2014.04.025
Google Scholar
[26]
Hou, P.-k., et al., Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cement and Concrete Composites, 2013. 35(1): pp.12-22.
DOI: 10.1016/j.cemconcomp.2012.08.027
Google Scholar
[27]
Shaikh, F.U.A. and S.W.M. Supit, Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and Building Materials, 2014. 70(Supplement C): pp.309-321.
DOI: 10.1016/j.conbuildmat.2014.07.099
Google Scholar
[28]
Zhang, M.-H., J. Islam, and S. Peethamparan, Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cement and Concrete Composites, 2012. 34(5): pp.650-662.
DOI: 10.1016/j.cemconcomp.2012.02.005
Google Scholar
[29]
Liu, M., et al., The synergistic effect of nano-silica with blast furnace slag in cement based materials. Construction and Building Materials, 2016. 126: pp.624-631.
DOI: 10.1016/j.conbuildmat.2016.09.078
Google Scholar
[30]
Nazari, A. and S. Riahi, Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder. Energy and Buildings, 2011. 43(4): pp.864-872.
DOI: 10.1016/j.enbuild.2010.12.006
Google Scholar
[31]
Nazari, A. and S. Riahi, The effects of TiO2 nanoparticles on physical, thermal and mechanical properties of concrete using ground granulated blast furnace slag as binder. Materials Science and Engineering: A, 2011. 528(4): pp.2085-2092.
DOI: 10.1016/j.msea.2010.11.070
Google Scholar
[32]
V. Rostami, Y. Shao, A.J. Boyd, Z. He, Microstructure of cement paste subject to early carbonation curing, Cem. Concr. Res. 42 (2012) 186–193.
DOI: 10.1016/j.cemconres.2011.09.010
Google Scholar
[33]
C.J. Keattch, D. Dollimore, Introduction to Thermogravimetry, vol. 45, Heydon, (1975).
Google Scholar
[34]
H.F.W. Taylor, Cement Chemistry, Academic Press Limited, London, (1990).
Google Scholar
[35]
King, D. (2012) The effect of silica fume on the properties of concrete as defined in concrete society report 74, cementitious materials. 37th conference on our world in concrete and structures.
Google Scholar
[36]
Lazaro, A., Quercia, G., Brouwers, H.J.H. and Gens, J.W. (2013) Synthesis of a green nano-silica material using beneficicated waste dunites and its application in concrete. World journal of nano science and engineering. 3:41-51.
DOI: 10.4236/wjnse.2013.33006
Google Scholar