[1]
A. Van Huis, Potential of insects as food and feed in assuring food security, Annual Review of Entomology. 58 (2013) 563-583.
DOI: 10.1146/annurev-ento-120811-153704
Google Scholar
[2]
Y. Hanboonsong, T. Jamjanya, and P. B. Durst, Six-legged livestock: edible insect farming, collection and marketing in Thailand, Bangkok, (2013).
Google Scholar
[3]
C. C. Xu, I. J. Yen, D. Bowman, and C. R. Turner, Spider web DNA: a new spin on noninvasive genetics of predator and prey, PloS One. 10(11) (2015) e0142503.
DOI: 10.1371/journal.pone.0142503
Google Scholar
[4]
A. Marien, F. Debode, C. Aerts, C. Ancion, F. Francis, and G. Berben, Detection of Hermetia illucens by real-time PCR, J. Insects as Food & Feed, (2018) 1-8.
DOI: 10.3920/jiff2017.0069
Google Scholar
[5]
P. D. Hebert and T. R. Gregory, The promise of DNA barcoding for taxonomy, Systematic Biology. 54(5) (2005) 852-859.
DOI: 10.1080/10635150500354886
Google Scholar
[6]
M. Carruthers, A. A. Yurchenko, J. J. Augley, C. E. Adams, P. Herzyk, and K. R. Elmer, De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species, BMC Genomics. 19(1) (2018) 32.
DOI: 10.1186/s12864-017-4379-x
Google Scholar
[7]
A. R. Khan, M. T. Pervez, M. E. Babar, N. Naveed, and M. Shoaib, A Comprehensive Study of De Novo Genome Assemblers: Current Challenges and Future Prospective, Evolutionary Bioinformatics. 14 (2018) 1176934318758650.
DOI: 10.1177/1176934318758650
Google Scholar
[8]
P. Taberlet, E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev, Towards next‐generation biodiversity assessment using DNA metabarcoding, Molecular Ecology. 21(8) (2012) 2045-2050.
DOI: 10.1111/j.1365-294x.2012.05470.x
Google Scholar
[9]
M. Ashfaq, J. S. Sabir, H. O. El-Ansary, K. Perez, V. Levesque-Beaudin, A. M. Khan, A. Rasool, C. Gallant, J. Addesi, and P. D. Hebert, Insect diversity in the Saharo-Arabian region: Revealing a little-studied fauna by DNA barcoding, PloS One. 13(7) (2018) e0199965.
DOI: 10.1371/journal.pone.0199965
Google Scholar
[10]
S. Derycke, J. Vanaverbeke, A. Rigaux, T. Backeljau, and T. Moens, Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes, PLoS One. 5(10) (2010) e13716.
DOI: 10.1371/journal.pone.0013716
Google Scholar
[11]
M. A. Smith, C. Bertrand, K. Crosby, E. S. Eveleigh, J. Fernandez-Triana, B. L. Fisher, J. Gibbs, M. Hajibabaei, W. Hallwachs, and K. Hind, Wolbachia and DNA barcoding insects: patterns, potential, and problems, PloS One. 7(5) (2012) e36514.
DOI: 10.1371/journal.pone.0036514
Google Scholar
[12]
A. Luo, A. Zhang, S. Y. Ho, W. Xu, Y. Zhang, W. Shi, S. L. Cameron, and C. Zhu, Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals, BMC Genomics. 12(1) (2011) 84.
DOI: 10.1186/1471-2164-12-84
Google Scholar
[13]
J. J. Wilson, DNA barcodes for insects, in DNA Barcodes, Springer, Canada, 2012, pp.17-46.
DOI: 10.1007/978-1-61779-591-6_3
Google Scholar
[14]
N. C. Krück, I. R. Tibbetts, R. D. Ward, J. W. Johnson, W. K. Loh, and J. R. Ovenden, Multi-gene barcoding to discriminate sibling species within a morphologically difficult fish genus (Sillago), Fisheries Research. 143 (2013) 39-46.
DOI: 10.1016/j.fishres.2013.01.007
Google Scholar
[15]
Y. Tian and D. R. Smith, Recovering complete mitochondrial genome sequences from RNA-Seq: a case study of Polytomella non-photosynthetic green algae, Molecular Phylogenetics & Evolution. 98 (2016) 57-62.
DOI: 10.1016/j.ympev.2016.01.017
Google Scholar
[16]
S. Liu, X. Wang, L. Xie, M. Tan, Z. Li, X. Su, H. Zhang, B. Misof, K. M. Kjer, and M. Tang, Mitochondrial capture enriches mito‐DNA 100 fold, enabling PCR‐free mitogenomics biodiversity analysis, Molecular Ecology Resources. 16(2) (2016) 470-479.
DOI: 10.1111/1755-0998.12472
Google Scholar
[17]
C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, and L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nature Protocols. 7(3) (2012) 562.
DOI: 10.1038/nprot.2012.016
Google Scholar
[18]
R. Lindner and C. C. Friedel, A comprehensive evaluation of alignment algorithms in the context of RNA-seq, PLoS One. 7(12) (2012) e52403.
DOI: 10.1371/journal.pone.0052403
Google Scholar
[19]
R. Leinonen, H. Sugawara, M. Shumway, and I. N. S. D. Collaboration, The sequence read archive, Nucleic Acids Research. 39(suppl_1) (2010) D19-D21.
DOI: 10.1093/nar/gkq1019
Google Scholar
[20]
B. Misof, S. Liu, K. Meusemann, R. S. Peters, A. Donath, C. Mayer, P. B. Frandsen, J. Ware, T. Flouri, and R. G. Beutel, Phylogenomics resolves the timing and pattern of insect evolution, Science. 346(6210) (2014) 763-767.
DOI: 10.1126/science.aaa7136
Google Scholar
[21]
P. J. Cock, J. M. Chilton, B. Grüning, J. E. Johnson, and N. Soranzo, NCBI BLAST+ integrated into Galaxy, Gigascience. 4(1) (2015) 39.
DOI: 10.1186/s13742-015-0080-7
Google Scholar
[22]
C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden, BLAST+: architecture and applications, BMC Bioinformatics. 10(1) (2009) 421.
DOI: 10.1186/1471-2105-10-421
Google Scholar
[23]
W. YE, J.-p. DANG, L.-d. XIE, and Y. HUANG, Complete mitochondrial genome of Teleogryllus emma (Orthoptera: Gryllidae) with a new gene order in Orthoptera, Zoological Research. 29(3) (2008) 236-244.
DOI: 10.3724/sp.j.1141.2008.00236
Google Scholar
[24]
W. Lee, J. Park, J. Choi, K. Jung, B. Park, D. Kim, J. Lee, K. Ahn, W. Song, and S. Kang, IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes, BMC Genomics. 10(1) (2009) 148.
DOI: 10.1186/1471-2164-10-148
Google Scholar
[25]
E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech, J. Chilton, D. Clements, N. Coraor, and B. A. Grüning, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Research. 46(W1) (2018) W537-W544.
DOI: 10.1093/nar/gky379
Google Scholar
[26]
A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, R. C. Geer, J. He, M. Gwadz, and D. I. Hurwitz, CDD: NCBI's conserved domain database, Nucleic Acids Research. 43(D1) (2014) D222-D226.
DOI: 10.1093/nar/gku1221
Google Scholar
[27]
E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research. 31(13) (2003) 3784-3788.
DOI: 10.1093/nar/gkg563
Google Scholar
[28]
K. Okonechnikov, O. Golosova, M. Fursov, and U. Team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics. 28(8) (2012) 1166-1167.
DOI: 10.1093/bioinformatics/bts091
Google Scholar
[29]
A. R. Jex, M. Hu, D. T. J. Littlewood, A. Waeschenbach, and R. B. Gasser, Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda), BMC Genomics. 9(1) (2008) 11.
DOI: 10.1186/1471-2164-9-11
Google Scholar
[30]
J.-Y. Zhang, D.-X. Song, and K.-Y. Zhou, The complete mitochondrial genome of the bristletail Pedetontus silvestrii (Archaeognatha: Machilidae) and an examination of mitochondrial gene variability within four bristletails, Annals of the Entomological Soc. America. 101(6) (2008) 1131-1136.
DOI: 10.1603/0013-8746-101.6.1131
Google Scholar
[31]
A. T. Beckenbach and J. B. Stewart, Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera), Genome. 52(1) (2008) 31-38.
DOI: 10.1139/g08-098
Google Scholar
[32]
R. Collins and R. Cruickshank, The seven deadly sins of DNA barcoding, Molecular Ecology Resources. 13(6) (2013) 969-975.
DOI: 10.1111/1755-0998.12046
Google Scholar