Novel DNA Barcode Sequence Discovery from Transcriptome of Acheta domesticus: A Partial Mitochondrial DNA

Article Preview

Abstract:

The potential of mitochondrial DNA (mtDNA) genes are well-known for species identification and to establish a phylogenetic relationship. The De-novo transcriptome assembly of Acheta domesticus commonly known as house cricket, is provides important segments of DNA fragments from mitochondrial DNA due to higher abundance of its mRNA. When the reference sequence with gene annotation is absent for assembling and aligning desire gene sequences, like in the present case, the most similar sequence is obtained from online insect mitochondrial genome database to find mitochondrial DNA conserved domains of interested gene from high throughput RNA sequencing (RNA-seq) data. The RNA-seq data of Acheta domesticus transcriptome is used to retrieve single nucleotide fragment out of 50,046 assembled contigs to discover three important genes from mtDNA of the house cricket. Present study provides effective workflow to identify genes like cytochrome c oxidase subunit II (COX2), NADH dehydrogenase subunit 2 (ND2), cytochrome c oxidase subunit I (COX1) from mtDNA in large sequence archive of RNA-seq data. These three novel barcode sequences will be useful for genetic identification and evolution investigation of Acheta domesticus. The partial mtDNA sequence with these genes will be important for mitochondrial genome construction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Van Huis, Potential of insects as food and feed in assuring food security, Annual Review of Entomology. 58 (2013) 563-583.

DOI: 10.1146/annurev-ento-120811-153704

Google Scholar

[2] Y. Hanboonsong, T. Jamjanya, and P. B. Durst, Six-legged livestock: edible insect farming, collection and marketing in Thailand, Bangkok, (2013).

Google Scholar

[3] C. C. Xu, I. J. Yen, D. Bowman, and C. R. Turner, Spider web DNA: a new spin on noninvasive genetics of predator and prey, PloS One. 10(11) (2015) e0142503.

DOI: 10.1371/journal.pone.0142503

Google Scholar

[4] A. Marien, F. Debode, C. Aerts, C. Ancion, F. Francis, and G. Berben, Detection of Hermetia illucens by real-time PCR, J. Insects as Food & Feed, (2018) 1-8.

DOI: 10.3920/jiff2017.0069

Google Scholar

[5] P. D. Hebert and T. R. Gregory, The promise of DNA barcoding for taxonomy, Systematic Biology. 54(5) (2005) 852-859.

DOI: 10.1080/10635150500354886

Google Scholar

[6] M. Carruthers, A. A. Yurchenko, J. J. Augley, C. E. Adams, P. Herzyk, and K. R. Elmer, De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species, BMC Genomics. 19(1) (2018) 32.

DOI: 10.1186/s12864-017-4379-x

Google Scholar

[7] A. R. Khan, M. T. Pervez, M. E. Babar, N. Naveed, and M. Shoaib, A Comprehensive Study of De Novo Genome Assemblers: Current Challenges and Future Prospective, Evolutionary Bioinformatics. 14 (2018) 1176934318758650.

DOI: 10.1177/1176934318758650

Google Scholar

[8] P. Taberlet, E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev, Towards next‐generation biodiversity assessment using DNA metabarcoding, Molecular Ecology. 21(8) (2012) 2045-2050.

DOI: 10.1111/j.1365-294x.2012.05470.x

Google Scholar

[9] M. Ashfaq, J. S. Sabir, H. O. El-Ansary, K. Perez, V. Levesque-Beaudin, A. M. Khan, A. Rasool, C. Gallant, J. Addesi, and P. D. Hebert, Insect diversity in the Saharo-Arabian region: Revealing a little-studied fauna by DNA barcoding, PloS One. 13(7) (2018) e0199965.

DOI: 10.1371/journal.pone.0199965

Google Scholar

[10] S. Derycke, J. Vanaverbeke, A. Rigaux, T. Backeljau, and T. Moens, Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes, PLoS One. 5(10) (2010) e13716.

DOI: 10.1371/journal.pone.0013716

Google Scholar

[11] M. A. Smith, C. Bertrand, K. Crosby, E. S. Eveleigh, J. Fernandez-Triana, B. L. Fisher, J. Gibbs, M. Hajibabaei, W. Hallwachs, and K. Hind, Wolbachia and DNA barcoding insects: patterns, potential, and problems, PloS One. 7(5) (2012) e36514.

DOI: 10.1371/journal.pone.0036514

Google Scholar

[12] A. Luo, A. Zhang, S. Y. Ho, W. Xu, Y. Zhang, W. Shi, S. L. Cameron, and C. Zhu, Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals, BMC Genomics. 12(1) (2011) 84.

DOI: 10.1186/1471-2164-12-84

Google Scholar

[13] J. J. Wilson, DNA barcodes for insects, in DNA Barcodes, Springer, Canada, 2012, pp.17-46.

DOI: 10.1007/978-1-61779-591-6_3

Google Scholar

[14] N. C. Krück, I. R. Tibbetts, R. D. Ward, J. W. Johnson, W. K. Loh, and J. R. Ovenden, Multi-gene barcoding to discriminate sibling species within a morphologically difficult fish genus (Sillago), Fisheries Research. 143 (2013) 39-46.

DOI: 10.1016/j.fishres.2013.01.007

Google Scholar

[15] Y. Tian and D. R. Smith, Recovering complete mitochondrial genome sequences from RNA-Seq: a case study of Polytomella non-photosynthetic green algae, Molecular Phylogenetics & Evolution. 98 (2016) 57-62.

DOI: 10.1016/j.ympev.2016.01.017

Google Scholar

[16] S. Liu, X. Wang, L. Xie, M. Tan, Z. Li, X. Su, H. Zhang, B. Misof, K. M. Kjer, and M. Tang, Mitochondrial capture enriches mito‐DNA 100 fold, enabling PCR‐free mitogenomics biodiversity analysis, Molecular Ecology Resources. 16(2) (2016) 470-479.

DOI: 10.1111/1755-0998.12472

Google Scholar

[17] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, and L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nature Protocols. 7(3) (2012) 562.

DOI: 10.1038/nprot.2012.016

Google Scholar

[18] R. Lindner and C. C. Friedel, A comprehensive evaluation of alignment algorithms in the context of RNA-seq, PLoS One. 7(12) (2012) e52403.

DOI: 10.1371/journal.pone.0052403

Google Scholar

[19] R. Leinonen, H. Sugawara, M. Shumway, and I. N. S. D. Collaboration, The sequence read archive, Nucleic Acids Research. 39(suppl_1) (2010) D19-D21.

DOI: 10.1093/nar/gkq1019

Google Scholar

[20] B. Misof, S. Liu, K. Meusemann, R. S. Peters, A. Donath, C. Mayer, P. B. Frandsen, J. Ware, T. Flouri, and R. G. Beutel, Phylogenomics resolves the timing and pattern of insect evolution, Science. 346(6210) (2014) 763-767.

DOI: 10.1126/science.aaa7136

Google Scholar

[21] P. J. Cock, J. M. Chilton, B. Grüning, J. E. Johnson, and N. Soranzo, NCBI BLAST+ integrated into Galaxy, Gigascience. 4(1) (2015) 39.

DOI: 10.1186/s13742-015-0080-7

Google Scholar

[22] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden, BLAST+: architecture and applications, BMC Bioinformatics. 10(1) (2009) 421.

DOI: 10.1186/1471-2105-10-421

Google Scholar

[23] W. YE, J.-p. DANG, L.-d. XIE, and Y. HUANG, Complete mitochondrial genome of Teleogryllus emma (Orthoptera: Gryllidae) with a new gene order in Orthoptera, Zoological Research. 29(3) (2008) 236-244.

DOI: 10.3724/sp.j.1141.2008.00236

Google Scholar

[24] W. Lee, J. Park, J. Choi, K. Jung, B. Park, D. Kim, J. Lee, K. Ahn, W. Song, and S. Kang, IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes, BMC Genomics. 10(1) (2009) 148.

DOI: 10.1186/1471-2164-10-148

Google Scholar

[25] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech, J. Chilton, D. Clements, N. Coraor, and B. A. Grüning, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Research. 46(W1) (2018) W537-W544.

DOI: 10.1093/nar/gky379

Google Scholar

[26] A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, R. C. Geer, J. He, M. Gwadz, and D. I. Hurwitz, CDD: NCBI's conserved domain database, Nucleic Acids Research. 43(D1) (2014) D222-D226.

DOI: 10.1093/nar/gku1221

Google Scholar

[27] E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research. 31(13) (2003) 3784-3788.

DOI: 10.1093/nar/gkg563

Google Scholar

[28] K. Okonechnikov, O. Golosova, M. Fursov, and U. Team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics. 28(8) (2012) 1166-1167.

DOI: 10.1093/bioinformatics/bts091

Google Scholar

[29] A. R. Jex, M. Hu, D. T. J. Littlewood, A. Waeschenbach, and R. B. Gasser, Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda), BMC Genomics. 9(1) (2008) 11.

DOI: 10.1186/1471-2164-9-11

Google Scholar

[30] J.-Y. Zhang, D.-X. Song, and K.-Y. Zhou, The complete mitochondrial genome of the bristletail Pedetontus silvestrii (Archaeognatha: Machilidae) and an examination of mitochondrial gene variability within four bristletails, Annals of the Entomological Soc. America. 101(6) (2008) 1131-1136.

DOI: 10.1603/0013-8746-101.6.1131

Google Scholar

[31] A. T. Beckenbach and J. B. Stewart, Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera), Genome. 52(1) (2008) 31-38.

DOI: 10.1139/g08-098

Google Scholar

[32] R. Collins and R. Cruickshank, The seven deadly sins of DNA barcoding, Molecular Ecology Resources. 13(6) (2013) 969-975.

DOI: 10.1111/1755-0998.12046

Google Scholar