[1]
C.N. Elias, M.A. Meyers, R.Z. Valiev, S.N. Monteiro, Ultrafine grained titanium for biomedical applications: An overview of performance, J. Mater. Res. Technol. 2 (2013) 340-350.
DOI: 10.1016/j.jmrt.2013.07.003
Google Scholar
[2]
R. Chaudhari, R. Bauri, Microstructure and Mechanical Properties of Titanium Processed by Spark Plasma Sintering (SPS), Metallogr. Microstruct. Anal. 3 (2014) 30-35.
DOI: 10.1007/s13632-013-0112-6
Google Scholar
[3]
M.J. Qarni, G. Sivaswamy, A. Rosochowski, S. Boczkal, On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP), Mater. Sci. Eng. A 699 (2017) 31-47.
DOI: 10.1016/j.msea.2017.05.040
Google Scholar
[4]
T.G. Langdon, M. Furukawa, M. Nemoto, Z. Horita, Using equal-channel angular pressing for refining grain size, J. Miner. Met. Mater. Soc. 52 (2000) 30-33.
DOI: 10.1007/s11837-000-0128-7
Google Scholar
[5]
K. Xia, X. Wu, T. Honma, S.P. Ringer, Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles, J. Mater. Sci. 42 (2007) 1551-1560.
DOI: 10.1007/s10853-006-0819-8
Google Scholar
[6]
K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, K. Yokoe, Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing, Acta. Mater. 48 (2000) 2625-2632.
DOI: 10.1016/s1359-6454(00)00061-6
Google Scholar
[7]
I. Karaman, M. Haouaoui, H.J. Maier, Nanoparticle consolidation using equal channel angular extrusion at room temperature, J. Mater. Sci. 42 (2007) 1561-1576.
DOI: 10.1007/s10853-006-0987-6
Google Scholar
[8]
K. Gudimetla, S.R. Kumar, B. Ravisankar, S. Kumaran, Densification of Al 5083 Mechanically Alloyed Powder by Equal Channel Angular Pressing, Trans. Indian. Inst. Met. 68 (2) (2015) 171-176.
DOI: 10.1007/s12666-015-0557-1
Google Scholar
[9]
S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, K. Jayasankar, Microstructural and mechanical properties of Al 7075 alloy processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A 533 (2012) 50-54.
DOI: 10.1016/j.msea.2011.11.031
Google Scholar
[10]
S.R. Kumar, K. Gudimetla, B. Tejaswi, B. Ravisankar, Effect of Microstructure and Mechanical Properties of Al–Mg Alloy Processed by ECAP at Room Temperature and Cryo Temperature, Trans. Indian. Inst. Met. 70 (2017) 639-648.
DOI: 10.1007/s12666-017-1073-2
Google Scholar
[11]
K. Gudimetla, G.V. Jampana S.R. Kumar, B. Ravisankar, S. Kumaran, Effect of Equal Channel Angular Pressing on Densification Behavior of Al 5083 Alloy Powder, Mater. Sci. Forum 830-831 (2015) 63-66.
DOI: 10.4028/www.scientific.net/msf.830-831.63
Google Scholar
[12]
G. Kondaiah, K.C. Sekhar, B. Chaithanyakrushna, B. Ravisankar, S. Kumaran, Characterization of Mechanically Alloyed Al5083 Alloy and Composite and Consolidation by Equal Channel Angular Pressing, Appl. Mech. Mater. 764-765 (2015) 23-27.
DOI: 10.4028/www.scientific.net/amm.764-765.23
Google Scholar
[13]
K. Gudimetla, B. Chaithanyakrushna, K.C. Sekhar, B. Ravisankar, S. Kumaran, Densification and Consolidation of Al 5083 Alloy Powder by Equal Channel Angular Pressing, Appl. Mech. Mater. 592-594 (2014) 112-116.
DOI: 10.4028/www.scientific.net/amm.592-594.112
Google Scholar
[14]
N. Praveen, G.V.S. Murthy, Determination of elastic modulus in a nickel alloy from ultrasonic measurements, Bull. Mater. Sci. 34 (2011) 323-326.
DOI: 10.1007/s12034-011-0070-z
Google Scholar