Bending Fatigue Damage Behavior of Annealed Polycrystalline Cu Foil

Article Preview

Abstract:

The metal foils at micrometer scale are applied in micro-electromechanical systems (MEMS) and devices widely, which the mechanical behaviors of them are significantly different from that of bulk materials and thin films constrained by a substrate. In this paper the annealed polycrystalline Cu foil with two thickness (t =100, 150 μm) was applied on the cantilever beam bending fatigue testing as a model material. The fatigue properties and the damage behaviors of the annealed polycrystalline Cu foil at the total strain control was investigated. The results showed that the bending fatigue life of the polycrystalline Cu foil with the grain size (d =9.2 μm) was significantly larger than that of the Cu bulk and thin Cu films with t =3 μm under the same strain range. The fatigue damage formation of the extrusions/intrusions and cracks along grain boundaries on the Cu foil surface caused fatigue fracture and final failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Spearing, Materials issues in microelectromechanical systems (MEMS), J. Acta Mater. 48 (2000) 179-196.

DOI: 10.1016/s1359-6454(99)00294-3

Google Scholar

[2] E. Arzt, Size effects in materials due to microstructural and dimensional constraints, Acta Mater. 46 (1998) 5611-5626.

DOI: 10.1016/s1359-6454(98)00231-6

Google Scholar

[3] G.P. Zhang, C.A. Volkert, R. Schwaiger, R. Mönig, O. Kraft, Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab. 47 (2007) 2007-2013.

DOI: 10.1016/j.microrel.2007.04.005

Google Scholar

[4] R. Hofbeck, K. Hausmann, B. Ilschner, H.U. Künzi, Fatigue of very thin copper and gold wires, Scr. Metall. 20 (1986) 1601-1605.

DOI: 10.1016/0036-9748(86)90403-5

Google Scholar

[5] M. Judelewicz, H.U. Künzi, N. Merk, B. Ilschner, Microstructural development during fatigue of copper foils 20-100 μm thick, Mater. Sci. and Eng. A 186 (1994) 135-142.

DOI: 10.1016/0921-5093(94)90312-3

Google Scholar

[6] S. Hong, R. Weil, Low cycle fatigue of thin copper foils, Thin Solid Films. 283 (1996) 175-181.

DOI: 10.1016/0040-6090(95)08225-5

Google Scholar

[7] D.T. Read, Tension-tension fatigue of copper thin films, Inter. J. Fatigue. 20 (1998) 203-209.

DOI: 10.1016/s0142-1123(97)00080-7

Google Scholar

[8] M. Klein, A. Hadrboletz, B. Weiss, G. Khatibi, The size effect on the stress-strain, fatigue and fracture properties of thin metallic foils, Mater. Sci. Eng. A 56 (2001) 319-321.

DOI: 10.1016/s0921-5093(01)01043-7

Google Scholar

[9] B. Weiss, V. Groger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, B. Zagar, Characterization of mechanical and thermal properties of thin Cu foils and wires, Sensor Actuat A-Phys. 99 (2002) 172-182.

DOI: 10.1016/s0924-4247(01)00877-9

Google Scholar

[10] G.P. Zhang, K. Takashima, M. Shimojo, Y. Higo, Fatigue behavior of microsized austenitic stainless steel specimens, Mater. Lett. 57 (2003) 1555-1560.

DOI: 10.1016/s0167-577x(02)01023-6

Google Scholar

[11] B.L. Boyce, J.R. Michael, P.G. Kotula, Fatigue of metallic microdevices and the role of fatigue-induced surface oxides, Acta Mater. 52 (2004) 1609-1619.

DOI: 10.1016/j.actamat.2003.12.032

Google Scholar

[12] S. M. Allameh, J. Lou, F. Kavishe, T. Buchheit, W.O. Soboyejo, An investigation of fatigue in LIGA Ni MEMS thin films, Mater. Sci. Eng. A 371 (2004) 256-266.

DOI: 10.1016/j.msea.2003.12.020

Google Scholar

[13] G. Khatibi, A. Betzwar, V. Groger, B. Weiss, A study of the mechanical and fatigue properties of metallic microwires, Fatigue Fract. Eng. M. 28 (2005) 723-733.

DOI: 10.1111/j.1460-2695.2005.00898.x

Google Scholar

[14] G. Simons, C. Weippert, J. Dual, J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils, Mater. Sci. Eng. A 416 (2006) 290-299.

DOI: 10.1016/j.msea.2005.10.060

Google Scholar

[15] G.P. Zhang, K. Takashima, Y. Higo, Fatigue strength of small-scale type 304 stainless steel thin films, Mater. Sci. Eng. A 426 (2006) 95-100.

DOI: 10.1016/j.msea.2006.03.090

Google Scholar

[16] A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Cao, Y. Estrin, Size effect on the tensile strength of fine-grained copper, Scr. Mater. 59 (2008) 1182-1185.

DOI: 10.1016/j.scriptamat.2008.08.004

Google Scholar

[17] K. Suzuki, Y. Matsuki, K. Masaki, M. Sat, M. Kuroda, Tensile and microbend tests of pure aluminum foils with different thicknesses, Mater. Sci. Eng. A 513 (2009) 77-82.

DOI: 10.1016/j.msea.2009.01.045

Google Scholar

[18] C.Y. Dai, G.P. Zhang, C. Yan, Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale, Philos. Mag. 91 (2011) 932-945.

DOI: 10.1080/14786435.2010.538017

Google Scholar

[19] C.Y. Dai, B. Zhang, J. Xu, G.P. Zhang, Size effects on fatigue properties of metal foils at micrometer scales, Mater. Sci. Eng. A 575 (2013) 217-222.

DOI: 10.1016/j.msea.2013.03.064

Google Scholar

[20] M. Lederer, V. Groger, G. Khatibi, B. Weiss, Size dependency of mechanical properties of high purity aluminum foils, Mater. Sci. Eng. A 527 (2010) 590-599.

DOI: 10.1016/j.msea.2009.08.016

Google Scholar

[21] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatigue behavior of polycrystalline thin copper films, J. Mater. Res. 93 (2002) 392-400.

DOI: 10.3139/146.020392

Google Scholar

[22] R. Schwaiger, O. Kraft, Size effects in the fatigue behavior of thin Ag films, Acta Mater. 51 (2003) 195-206.

DOI: 10.1016/s1359-6454(02)00391-9

Google Scholar

[23] G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, Z.G. Wang, Tensile and fatigue strength of ultrathin copper films, Mater. Sci. Eng. A 92 (2008) 387-390.

DOI: 10.1016/j.msea.2007.02.132

Google Scholar

[24] X.J. Sun, C.C. Wang, J. Zhang, G. Liu, G.J. Zhang, g X.D. Din, G.P. Zhang, J. Sun, Thickness dependent fatigue life at micro crack nucleation for metal thin films on flexible substrates, J. Phys. D: Appl. Phys. 41 (2008) 195404.

DOI: 10.1088/0022-3727/41/19/195404

Google Scholar

[25] X.F. Zhu, G.P. Zhang, Tensile and fatigue properties of ultrafine Cu–Ni multilayers, J. Phys. D: Appl. Phys. 42 (2009) 395-411.

DOI: 10.1088/0022-3727/42/5/055411

Google Scholar

[26] M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines, Scr. Mater. 60 (2009) 803-806.

DOI: 10.1016/j.scriptamat.2009.01.024

Google Scholar

[27] M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, Scaling of reliability of gold interconnect lines subjected to alternating current, Appl. Phys. Lett. 99 (2011) 01190.

DOI: 10.1063/1.3609779

Google Scholar

[28] M. Wang, D. Wang, T. Kups, P. Schaaf, Size effect on mechanical behavior of Al/Si3N4 multilayers by nanoindentation, Mater. Sci. Eng. A 644 (2015) 275-283.

DOI: 10.1016/j.msea.2015.07.071

Google Scholar

[29] M. Wang, D. Wang, T. Kups, P. Schaaf, Size effect on the mechanical behavior of Al/Si multilayers deposited on Kapton substrate, J. Mater. Sci.: Mater. Electron. 26 (2015) 8224-8228.

DOI: 10.1007/s10854-015-3485-2

Google Scholar

[30] G.P. Zhang, C.A. Volkert, R. Schwaiger, E. Arzt, O. Kraft, Damage Behavior of 200-nm Thin Copper Films Under Cyclic Loading, J. Journal of Materials Research. 20 (2005) 201-207.

DOI: 10.1557/jmr.2005.0019

Google Scholar

[31] G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft, Length-scale-controlled fatigue mechanisms in thin copper films, Acta Mater. 54 (2006) 3127-3139.

DOI: 10.1016/j.actamat.2006.03.013

Google Scholar

[32] D. Wang, C.A. Volkert, O. Kraft, Effect of length scale on fatigue life and damage formation in thin Cu films, Mater. Sci. Eng. A 493 (2008) 267-273.

DOI: 10.1016/j.msea.2007.06.092

Google Scholar

[33] P. Lukáš, L. Kunz, Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper, Mater. Sci. Eng. A 85 (1987) 67-75.

DOI: 10.1016/0025-5416(87)90468-x

Google Scholar

[34] C.Y. Dai, X.F. ZHu, G.P. Zhang. Tensile and Fatigue Properties of Free-Standing Cu Foils. J. Mater. Sci. Technol. 25(2009) 721-726.

Google Scholar

[35] C.Y. Dai, G.P. Zhang, C. Yan. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale. Philos. Mag. 91(2011) 932-945.

DOI: 10.1080/14786435.2010.538017

Google Scholar