[1]
S.M. Spearing, Materials issues in microelectromechanical systems (MEMS), J. Acta Mater. 48 (2000) 179-196.
DOI: 10.1016/s1359-6454(99)00294-3
Google Scholar
[2]
E. Arzt, Size effects in materials due to microstructural and dimensional constraints, Acta Mater. 46 (1998) 5611-5626.
DOI: 10.1016/s1359-6454(98)00231-6
Google Scholar
[3]
G.P. Zhang, C.A. Volkert, R. Schwaiger, R. Mönig, O. Kraft, Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab. 47 (2007) 2007-2013.
DOI: 10.1016/j.microrel.2007.04.005
Google Scholar
[4]
R. Hofbeck, K. Hausmann, B. Ilschner, H.U. Künzi, Fatigue of very thin copper and gold wires, Scr. Metall. 20 (1986) 1601-1605.
DOI: 10.1016/0036-9748(86)90403-5
Google Scholar
[5]
M. Judelewicz, H.U. Künzi, N. Merk, B. Ilschner, Microstructural development during fatigue of copper foils 20-100 μm thick, Mater. Sci. and Eng. A 186 (1994) 135-142.
DOI: 10.1016/0921-5093(94)90312-3
Google Scholar
[6]
S. Hong, R. Weil, Low cycle fatigue of thin copper foils, Thin Solid Films. 283 (1996) 175-181.
DOI: 10.1016/0040-6090(95)08225-5
Google Scholar
[7]
D.T. Read, Tension-tension fatigue of copper thin films, Inter. J. Fatigue. 20 (1998) 203-209.
DOI: 10.1016/s0142-1123(97)00080-7
Google Scholar
[8]
M. Klein, A. Hadrboletz, B. Weiss, G. Khatibi, The size effect on the stress-strain, fatigue and fracture properties of thin metallic foils, Mater. Sci. Eng. A 56 (2001) 319-321.
DOI: 10.1016/s0921-5093(01)01043-7
Google Scholar
[9]
B. Weiss, V. Groger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, B. Zagar, Characterization of mechanical and thermal properties of thin Cu foils and wires, Sensor Actuat A-Phys. 99 (2002) 172-182.
DOI: 10.1016/s0924-4247(01)00877-9
Google Scholar
[10]
G.P. Zhang, K. Takashima, M. Shimojo, Y. Higo, Fatigue behavior of microsized austenitic stainless steel specimens, Mater. Lett. 57 (2003) 1555-1560.
DOI: 10.1016/s0167-577x(02)01023-6
Google Scholar
[11]
B.L. Boyce, J.R. Michael, P.G. Kotula, Fatigue of metallic microdevices and the role of fatigue-induced surface oxides, Acta Mater. 52 (2004) 1609-1619.
DOI: 10.1016/j.actamat.2003.12.032
Google Scholar
[12]
S. M. Allameh, J. Lou, F. Kavishe, T. Buchheit, W.O. Soboyejo, An investigation of fatigue in LIGA Ni MEMS thin films, Mater. Sci. Eng. A 371 (2004) 256-266.
DOI: 10.1016/j.msea.2003.12.020
Google Scholar
[13]
G. Khatibi, A. Betzwar, V. Groger, B. Weiss, A study of the mechanical and fatigue properties of metallic microwires, Fatigue Fract. Eng. M. 28 (2005) 723-733.
DOI: 10.1111/j.1460-2695.2005.00898.x
Google Scholar
[14]
G. Simons, C. Weippert, J. Dual, J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils, Mater. Sci. Eng. A 416 (2006) 290-299.
DOI: 10.1016/j.msea.2005.10.060
Google Scholar
[15]
G.P. Zhang, K. Takashima, Y. Higo, Fatigue strength of small-scale type 304 stainless steel thin films, Mater. Sci. Eng. A 426 (2006) 95-100.
DOI: 10.1016/j.msea.2006.03.090
Google Scholar
[16]
A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Cao, Y. Estrin, Size effect on the tensile strength of fine-grained copper, Scr. Mater. 59 (2008) 1182-1185.
DOI: 10.1016/j.scriptamat.2008.08.004
Google Scholar
[17]
K. Suzuki, Y. Matsuki, K. Masaki, M. Sat, M. Kuroda, Tensile and microbend tests of pure aluminum foils with different thicknesses, Mater. Sci. Eng. A 513 (2009) 77-82.
DOI: 10.1016/j.msea.2009.01.045
Google Scholar
[18]
C.Y. Dai, G.P. Zhang, C. Yan, Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale, Philos. Mag. 91 (2011) 932-945.
DOI: 10.1080/14786435.2010.538017
Google Scholar
[19]
C.Y. Dai, B. Zhang, J. Xu, G.P. Zhang, Size effects on fatigue properties of metal foils at micrometer scales, Mater. Sci. Eng. A 575 (2013) 217-222.
DOI: 10.1016/j.msea.2013.03.064
Google Scholar
[20]
M. Lederer, V. Groger, G. Khatibi, B. Weiss, Size dependency of mechanical properties of high purity aluminum foils, Mater. Sci. Eng. A 527 (2010) 590-599.
DOI: 10.1016/j.msea.2009.08.016
Google Scholar
[21]
O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Fatigue behavior of polycrystalline thin copper films, J. Mater. Res. 93 (2002) 392-400.
DOI: 10.3139/146.020392
Google Scholar
[22]
R. Schwaiger, O. Kraft, Size effects in the fatigue behavior of thin Ag films, Acta Mater. 51 (2003) 195-206.
DOI: 10.1016/s1359-6454(02)00391-9
Google Scholar
[23]
G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, Z.G. Wang, Tensile and fatigue strength of ultrathin copper films, Mater. Sci. Eng. A 92 (2008) 387-390.
DOI: 10.1016/j.msea.2007.02.132
Google Scholar
[24]
X.J. Sun, C.C. Wang, J. Zhang, G. Liu, G.J. Zhang, g X.D. Din, G.P. Zhang, J. Sun, Thickness dependent fatigue life at micro crack nucleation for metal thin films on flexible substrates, J. Phys. D: Appl. Phys. 41 (2008) 195404.
DOI: 10.1088/0022-3727/41/19/195404
Google Scholar
[25]
X.F. Zhu, G.P. Zhang, Tensile and fatigue properties of ultrafine Cu–Ni multilayers, J. Phys. D: Appl. Phys. 42 (2009) 395-411.
DOI: 10.1088/0022-3727/42/5/055411
Google Scholar
[26]
M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines, Scr. Mater. 60 (2009) 803-806.
DOI: 10.1016/j.scriptamat.2009.01.024
Google Scholar
[27]
M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, Scaling of reliability of gold interconnect lines subjected to alternating current, Appl. Phys. Lett. 99 (2011) 01190.
DOI: 10.1063/1.3609779
Google Scholar
[28]
M. Wang, D. Wang, T. Kups, P. Schaaf, Size effect on mechanical behavior of Al/Si3N4 multilayers by nanoindentation, Mater. Sci. Eng. A 644 (2015) 275-283.
DOI: 10.1016/j.msea.2015.07.071
Google Scholar
[29]
M. Wang, D. Wang, T. Kups, P. Schaaf, Size effect on the mechanical behavior of Al/Si multilayers deposited on Kapton substrate, J. Mater. Sci.: Mater. Electron. 26 (2015) 8224-8228.
DOI: 10.1007/s10854-015-3485-2
Google Scholar
[30]
G.P. Zhang, C.A. Volkert, R. Schwaiger, E. Arzt, O. Kraft, Damage Behavior of 200-nm Thin Copper Films Under Cyclic Loading, J. Journal of Materials Research. 20 (2005) 201-207.
DOI: 10.1557/jmr.2005.0019
Google Scholar
[31]
G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft, Length-scale-controlled fatigue mechanisms in thin copper films, Acta Mater. 54 (2006) 3127-3139.
DOI: 10.1016/j.actamat.2006.03.013
Google Scholar
[32]
D. Wang, C.A. Volkert, O. Kraft, Effect of length scale on fatigue life and damage formation in thin Cu films, Mater. Sci. Eng. A 493 (2008) 267-273.
DOI: 10.1016/j.msea.2007.06.092
Google Scholar
[33]
P. Lukáš, L. Kunz, Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper, Mater. Sci. Eng. A 85 (1987) 67-75.
DOI: 10.1016/0025-5416(87)90468-x
Google Scholar
[34]
C.Y. Dai, X.F. ZHu, G.P. Zhang. Tensile and Fatigue Properties of Free-Standing Cu Foils. J. Mater. Sci. Technol. 25(2009) 721-726.
Google Scholar
[35]
C.Y. Dai, G.P. Zhang, C. Yan. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale. Philos. Mag. 91(2011) 932-945.
DOI: 10.1080/14786435.2010.538017
Google Scholar