Microstructural Evolution and Room Temperature Fracture Toughness of a Nb-Ti-Si-Cr-Al-Hf-Y Alloy Prepared by Directional Solidification

Article Preview

Abstract:

The Nb-24Ti-12Si-14Cr-2Al-2Hf-0.1Y (at.%) alloys were fabricated by directional solidification with selected withdrawal rate 1.2 and 18 mm/min, followed by a heat treatment at 1375 °C for 10 h. The microstructure of directional solidified samples were composed of NbSS, Cr2Nb and eutectics (NbSS+Nb5Si3), aligning with the growth direction. After heat treatment, the NbSS in the eutectic structures and NbSS dendrites were connected to form the matrix, and the silicide and Cr2Nb tended to spheroidize. The sample prepared by higher withdrawal rate plus heat treament shows higher average KQ values. The results suggested that the Nb-Si based alloy showed higher room-temperature fracture toughness when the microstructure consists of continuous NbSS distributed with finer Nb5Si3 and Cr2Nb.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-high temperature Nb-silicide-based composites, Metall. Mater. Trans. A 34 (2003) 2043-2052.

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[2] K. Zelenitsas, P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behavior of Nb-Ti-Si in situ composites at 800 oC, Mater. Sci. Eng. A 416 (2006) 269-280.

DOI: 10.1016/j.msea.2005.10.017

Google Scholar

[3] K.S. Chan, D.L. Davinson, Effects of Ti addition on cleavage fracture in Nb-Cr-Ti solid-solution alloys, Metall. Mater. Trans. A 30 (1999) 925-939.

DOI: 10.1007/s11661-999-0146-1

Google Scholar

[4] Y. Li, W.F. Zhu, Q. Li, S.K. Qiu, J.Y. Zhang, Phase equilibria in the Nb-Ti side of the Nb-Si-Ti system at 1200°C and its oxidation behavior, J. Alloy Compd. 704 (2017) 311-321.

DOI: 10.1016/j.jallcom.2017.02.007

Google Scholar

[5] S. Zhang, X. Guo, Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys, Intermetallics, 70 (2016) 33-44.

DOI: 10.1016/j.intermet.2015.12.002

Google Scholar

[6] J. Geng, P. Tsakiropoulos, A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf and Sn. Intermetallics, 2007, 15(3): 382-395.

DOI: 10.1016/j.intermet.2006.08.016

Google Scholar

[7] K.S. Chan, Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites, Materials Science and Engineering: A, 2002, 329: 513-522.

DOI: 10.1016/s0921-5093(01)01502-7

Google Scholar

[8] N. Esparza, V. Rangel, A. Gutierrez, B. Arellano, S. K. Varma, A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb-Cr-Si system, Materials at High Temperatures 33 (2016) 105-114.

DOI: 10.1179/1878641315y.0000000012

Google Scholar

[9] J.B. Sha, J. Liu, and C.G. Zhou, Effect of Cr additions on toughness, strength, and oxidation resistance of an Nb-4Si-20Ti-6Hf alloy at room and/or high temperatures, Metall. Mater. Trans. A 42 (2011) 1534-1543.

DOI: 10.1007/s11661-010-0549-z

Google Scholar

[10] S. Qu, Y.F. Han, J.X. Song, C.B. Xiao, L.G. Song, Effects of Y and Ce on microstructures and properties of Nb-Si system composites, J. Rare Earths, 22 (2004) 197-200.

Google Scholar

[11] L.F. Su, L.N. Jia, S.N. Yuan, H.R. Zhang, Hu Zhang, Microstructure evolution in Nb-12Si-22Ti-14Cr-2Al2Hf alloy fabricated by directional solidification, High Temperature Materials and Processes, 2014, 33(6): 495-498.

DOI: 10.1515/htmp-2013-0090

Google Scholar

[12] L.N. Jia, J.F. Weng, Z. Li, Z. Hong, L.F. Su, H. Zhang, Room temperature mechanical properties and high temperature oxidation resistance of a high Cr containing Nb-Si based alloy, Mater. Sci. Eng. A 623 (2015) 32-37.

DOI: 10.1016/j.msea.2014.11.001

Google Scholar

[13] H.Z. Fu, Guo JJ, Liu L, Li JS, Directional solidification and processing of advanced materials, Science press, China, (2008).

Google Scholar

[14] S.N. Yuan, L.N. Jia, L.M. Ma, R.J. Cui, L.F. Su, H. Zhang, The microstructure optimizing of the Nb-14Si-22Ti-4Cr-2Al-2Hf alloy processed by directional solidification, Mater. Lett. 84(2012)124-127.

DOI: 10.1016/j.matlet.2012.06.044

Google Scholar

[15] N. Sekido, Y. Kimura, S. Miura, F.G. Wei, Y. Mishima, Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys, J. Alloys and Comp. 425 (2006) 223-229.

DOI: 10.1016/j.jallcom.2006.01.071

Google Scholar

[16] B.P. Bewlay, H.A. Lipsitt, M.R. Jackson, W.J. Reeder, J.A. Sutliff, Solidification processing of high temperature intermetallic eutectic-based alloys. Mater. Sci. Eng. A 192/193(1995) 534-543.

DOI: 10.1016/0921-5093(95)03299-1

Google Scholar

[17] H.S. Guo, X.P. Guo, Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy, Scripta Mater. 24 (2011) 637-640.

DOI: 10.1016/j.scriptamat.2010.12.008

Google Scholar

[18] J.L. Yu, K.F. Zhang, Tensile properties of multiphase refractory Nb-16Si-2Fe in situ composite, Scripta Mater. 59 (2008) 714-717.

DOI: 10.1016/j.scriptamat.2008.05.035

Google Scholar

[19] M.G. Mendiratta, J.J. Lewandowski, D.M. Dimiduk, Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys, Metall. Trans. A, 1991, 22(7): 1573.

DOI: 10.1007/bf02667370

Google Scholar