Room-Temperature Ferromagnetism in Mn-Doped CuCrO2 Nanopowders

Article Preview

Abstract:

(Cu1-xMnx)CrO2 (0≤ x ≤6 at%) and Cu (Cr1-yMny)O2 (0≤ y ≤6 at%) nanopowders were prepared by combining solid-state reaction and ball milling. The Mn concentration dependences of microstructure, morphology and magnetic properties were investigated. It is found that all the samples have a pure 3R-CuCrO2 delafossite structure. The lattice expansion supports the Mn entrance into the Cu and Cr sublattices, respectively, in (Cu1-xMnx)CrO2 and Cu (Cr1-yMny)O2, which is further proved by X-ray photoelectron spectroscopy to some degree. A-site Mn substitution brings about paramagnetic behavior. However, room-temperature ferromagnetism is achieved in B-site Mn-doped samples, originating from the hole-mediated Cr3+–Mn3+ double-exchange interaction. The saturation magnetization of this CuMO2 delafossite (M=Cr, Mn) is about an order of magnitude higher than literature values, and gradually decreased with the Mn addition due to the combined influence of the number of the MM pairs, the MM distances and the hole density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-100

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, 287 (2000) 1019-1022.

DOI: 10.1126/science.287.5455.1019

Google Scholar

[2] T. Dietl, Ferromagnetic Semiconductors, Semicond. Sci. Technol., 17 (2002) 377-392.

DOI: 10.1088/0268-1242/17/4/310

Google Scholar

[3] K. Sato, H. Katayama-Yoshida, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors, Jpn. J. Appl. Phys., 39 (2000) L555-558.

DOI: 10.1143/jjap.39.l555

Google Scholar

[4] H. Kizaki, K. Sato, A. Yanase, H. Katayama-Yoshida, First-Principles Materials Design of CuAlO2 Based Dilute Magnetic Semiconducting Oxide, Jpn. J. Appl. Phys., 44 (2005) L1187-1189.

DOI: 10.1143/jjap.44.l1187

Google Scholar

[5] H.Y. Zhang, P.G. Li, C.P. Chen, Q.Y. Tu, W.H. Tang, Magnetic Properties of Mn-Doped Transparent CuAlO2 Semiconductor, J. Alloys Compd., 396 (2005) 40-43.

DOI: 10.1016/j.jallcom.2004.12.037

Google Scholar

[6] D. Li, X.D. Fang, W.W. Dong, Z.H. Deng, R.H. Tao, S. Zhou, J.M. Wang, T. Wang, Y.P. Zhao, X.B. Zhu, Magnetic and Electrical Properties of P-Type Mn-Doped CuCrO2 Semiconductors, J. Phys. D: Appl. Phys., 42 (2009) 055009.

DOI: 10.1088/0022-3727/42/5/055009

Google Scholar

[7] R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, P-Type Conductivity in CuCr1-xMgxO2 Films and Powders, J. Appl. Phys., 89 (2001) 8022-8025.

DOI: 10.1063/1.1372636

Google Scholar

[8] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[9] Y. Kamiharaa, M. Matoba, T. Kyomen, M. Itoh, Magnetic and Electronic Nature of Layered Manganese Oxysulfide Sr2CuMnO3S, J. Appl. Phys., 91 (2002) 8864-8866.

DOI: 10.1063/1.1450836

Google Scholar

[10] D.H. Jiang, Y.G. Zhang, X.H. Li, Synergistic Effects of CuO and Au Nanodomains on Cu2O Cubes for Improving Photocatalytic Activity and Stability, Chin. J. Catal., 40 (2019) 105-113.

DOI: 10.1016/s1872-2067(18)63164-x

Google Scholar

[11] J.F. Weaver, H.A.E. Hagelin, G.B. Hoflund, G.N. Salaita, Electron Energy Loss Spectra from Polycrystalline Cr and Cr2O3 before and after Surface Reduction by Ar+ Bombardment, Appl. Surf. Sci., 252 (2006) 7895-7903.

DOI: 10.1016/j.apsusc.2005.09.059

Google Scholar

[12] L. Yuan, X.L. Weng, M. Zhou, Q.Y. Zhang, L.J. Deng, Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments, Nanoscale Res. Lett., 12 (2017) 597.

DOI: 10.1186/s11671-017-2365-5

Google Scholar

[13] R. Maier, J.L. Cohn, Ferroelectric and Ferrimagnetic Iron-Doped Thin-Film BaTiO3: Influence of Iron on Physical Properties, J. Appl. Phys., 92 (2002) 5429-5436.

DOI: 10.1063/1.1510591

Google Scholar

[14] F.T. Lin, D.M. Jiang, X.M. Ma, W.Z. Shi, Influence of Doping Concentration on Room-Temperature Ferromagnetism for Fe-Doped BaTiO3 Ceramics, J. Magn. Magn. Mater., 320 (2008) 691-694.

DOI: 10.1016/j.jmmm.2007.08.008

Google Scholar

[15] F.T. Lin, D.M. Jiang, X.M. Ma, W.Z. Shi, Effect of Annealing Atmosphere on Magnetism for Fe-Doped BaTiO3 Ceramic, Physica B, 403 (2008) 2525-2529.

DOI: 10.1016/j.physb.2008.01.016

Google Scholar

[16] F.T. Lin, W.Z. Shi, Magnetic Properties of Transition-Metal-Codoped BaTiO3 Systems, J. Alloys Compd., 475 (2009) 64-69.

DOI: 10.1016/j.jallcom.2008.08.037

Google Scholar

[17] F.T. Lin, W.Z. Shi, Influence of Non-Isovalent Ion Substitution at A Site on Microstructure and Magnetic Properties of Ba(Ti0.3Fe0.7)O3 Ceramic, J. Alloys Compd., 495 (2010) 167-172.

DOI: 10.1016/j.jallcom.2010.01.113

Google Scholar

[18] F.T. Lin, W.Z. Shi, Effect of Sr Concentration on Microstructure and Magnetic Properties of (Ba1-xSrx)(Ti0.3Fe0.7)O3 Ceramics, J. Magn. Magn. Mater., 322 (2010) 2081-2085.

DOI: 10.1016/j.jmmm.2010.03.004

Google Scholar

[19] F.T. Lin, W.Z. Shi, Influence of Vacuum Annealing on Microstructure and Magnetic Properties of (Ba0.8Sr0.2)(Ti0.3Fe0.7)O3 Ceramic, Physica B, 405 (2010) 1750-1753.

DOI: 10.1016/j.physb.2010.01.033

Google Scholar

[20] F.T. Lin, W.Z. Shi, Effects of Doping Site and Pre-Sintering Time on Microstructure and Magnetic Properties of Fe-Doped BaTiO3 Ceramics, Physica B, 407 (2012) 451-456.

DOI: 10.1016/j.physb.2011.11.013

Google Scholar

[21] M.B. Stearns, Y. Cheng, Determination of Para- and Ferromagnetic Components of Magnetization and Magnetoresistance of Granular Co/Ag Films, J. Appl. Phys., 75 (1994) 6894-6899.

DOI: 10.1063/1.356773

Google Scholar

[22] X.Y. Pan, D.M. Jiang, Y. Lin, X.M. Ma, Structural Characterization and Ferromagnetic Behavior of Fe-Doped TiO2 Powder by High-Energy Ball Milling, J. Magn. Magn. Mater., 305 (2006) 388-391.

DOI: 10.1016/j.jmmm.2006.01.109

Google Scholar

[23] L.W. Zhang, G. Feng, H. Liang, B.S. Cao, M.H. Zhu, Y.G. Zhao, The Magnetotransport Properties of LaMn1-xCrxO3 Manganites, J. Magn. Magn. Mater., 219 (2000) 236-240.

DOI: 10.1016/s0304-8853(00)00465-0

Google Scholar

[24] L. Morales, R. Allub, B. Alascio, A. Butera, A. Caneiro, Structural and Magnetotransport Properties of LaMn1-xCrxO3.00 (0≤ x ≤0.15): Evidence of Mn3+-O-Cr3+ Double-Exchange Interaction, Phys. Rev. B, 72 (2005) 132413.

Google Scholar

[25] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science, 299 (2003) 1719-1722.

DOI: 10.1126/science.1080615

Google Scholar