Influence of Bottom Ashes from Biomass on Compressive Strength of Concretes

Article Preview

Abstract:

The preliminary results of utilization of bottom ash from combustion of biomass for the produce of concrete has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). Concrete were made using CEM I 42.5 R (Cemex) and sand - gravel mix aggregate. The obtained concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the natural aggregates by bottom ash from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Trybalski, W. Kępys, A. Krawczykowska, D. Krawczykowski, D. Szponder, Co-combustion of coal and biomass – chemical properties of ash,, Pol. J. Environ. Stud., vol. 23, 2014, pp.1427-1431.

Google Scholar

[2] P. Grammelis, G. Skodras, E. Kakaras, Effect of biomass co-firing with coal on ash properties. Part I: Characterization and PDS, Fuel, vol. 85, 2006, pp.2310-2315.

DOI: 10.1016/j.fuel.2006.01.036

Google Scholar

[3] A.K. James, R.W. Thring, S. Helle, H. S. Ghuman, Ash Management Review—Applications of Biomass Bottom Ash, Energies, vol. 5, 2012, 3856-3873.

DOI: 10.3390/en5103856

Google Scholar

[4] S. Arvelakis, F. J. Frandsen, Rheology of fly ashes from coal and biomass co-combustion, Fuel, vol. 89, 2010, pp.3132-3140.

DOI: 10.1016/j.fuel.2010.04.019

Google Scholar

[5] K. Trybalski, W. Kępys, D. Krawczykowski, A. Krawczykowska, D. Szponder, Physical properties of ash from co-combustion of coal and biomass,, Pol. J. Environ. Stud., vol. 23, 2014, pp.1433-1436.

Google Scholar

[6] R.P. Girón, B. Ruiz, E. Fuente, R.R. Gil, I. Suárez-Ruiz, Properties of fly ash from forest biomass combustion, Fuel, vol. 114, 2013, pp.71-77.

DOI: 10.1016/j.fuel.2012.04.042

Google Scholar

[7] J. R. Kleven, T. B. Edil, Benson CH. Evaluation of excess foundry system sands for use as sub base material. Trans Res Rec. Washington DC: Transportation Research Board; 2000, pp.40-48.

DOI: 10.3141/1714-06

Google Scholar

[8] P. Kishor, A.K. Ghosh, D, Kumar, Use of fly ash in agriculture: A way to improve soil fertility and its productivity", Asian J. Agric. Res., vol. 4, 2010, 1-14.

Google Scholar

[9] T. Abichou, C. H. Benson, T. B. Edil, Database on beneficial reuse of foundry byproducts In: Recycled materials in geotechnical applications (eds.) C. Vipulanandan, D. Elton, Geotechnical Special Publication ASCE, 79, 1998, pp.210-223.

Google Scholar

[10] B. Carrasco, N. Cruz, J. Terrados, F. A. Corpas, L. Pérez, An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks, Fuel, vol., 118, 2014, 272-280.

DOI: 10.1016/j.fuel.2013.10.077

Google Scholar

[11] M. Ulewicz, J. Jura, Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, 01029 (2017),.

DOI: 10.1051/e3sconf/20171801029

Google Scholar

[12] J. Rosales, M. Cabrera, M. G. Beltrán, M. López, F.Agrela, Effects of treatments on biomass bottom ash applied to the manufacture of cement mortars, Journal of Cleaner Production, vol. 154, 2017, 424-435.

DOI: 10.1016/j.jclepro.2017.04.024

Google Scholar

[13] E. S. Abdrakhimova, V. Z. Abdrakhimov, Characterization of a ceramic composite material based on beidellite clay and ash and slag waste, Solid Fuel Chem., vol. 46, 2012, pp.185-190.

DOI: 10.3103/s0361521912030020

Google Scholar

[14] L. Pérez-Villarejo, D. Eliche-Quesada, Fco. J. Iglesias-Godino, C. Martínez-García, Fco. A. Corpas-Iglesias, Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks, J. Environ. Manage., vol. 95, 2012, pp.349-354.

DOI: 10.1016/j.jenvman.2010.10.022

Google Scholar

[15] T. R. Naik, R. N. Kraus, Y. M. Chun, W. B. Ramme, S. S. Singh, Properties of field manufactured cast-concrete products utilizing recycled materials, J. Mater. Civil Eng., ASCE 15, 2003, pp.400-407.

DOI: 10.1061/(asce)0899-1561(2003)15:4(400)

Google Scholar

[16] M. Karaşahin, S. Terzi, Evaluation of marble waste dust in the mixture of asphaltic concrete, Constr. Build. Mater., vol. 21, 2007, pp.616-620.

DOI: 10.1016/j.conbuildmat.2005.12.001

Google Scholar

[17] S. Fiore, M. C. Zanetti, Foundry wastes reuse and recycling in concrete production. Am. J. Environ. Sci., vol. 3, 2007, pp.135-42.

Google Scholar

[18] S. Javed, C. W. Lovell, L. E. Wood, Waste foundry sand in asphalt concrete. Trans. Res. Board, 1437, 1994, pp.27-34.

Google Scholar

[19] R. Rajamma, R. J. Ball, L.A.C. Tarelho, G. C. Allen, J. A. Labrincha, V. M. Ferreira, Characterisation and use of biomass fly ash in cement-based materials, J. Hazard. Mater., 172, 2009, p.1049–1060.

DOI: 10.1016/j.jhazmat.2009.07.109

Google Scholar

[20] A. A. T. Masiá, B. J. P. Buhre, R.P. Gupta, T. F. Wall, Characterising ash of biomass and waste, Fuel Process. Technol., vol. 88, 2007, pp.1071-1081.

DOI: 10.1016/j.fuproc.2007.06.011

Google Scholar