[1]
1. M.J. Pawar, A. Patnaik, en R. Nagar, Numerical Simulation and Experimental Validation of Granite Powder Filled Jute Epoxy Composite for Slurry Jet Erosive Wear, Int. Polym. Process. (2012) (2016) 37–50.
DOI: 10.3139/217.3135
Google Scholar
[2]
Sangamesh, K.S. Ravishankar, en S.M. Kulkarni, Impact analysis of natural fiber and synthetic fiber reinforced polymer composite, AIP Conf. Proc. 1953 (2018) 13003-1–13004.
DOI: 10.1063/1.5033147
Google Scholar
[3]
S. Kumar et al., Behavior of Kevlar/Epoxy Composite Plates Under Ballistic Impact, J. Reinf. Plast. Compos. 29 (13/2010) (2010) 2048–(2064).
DOI: 10.1177/0731684409343727
Google Scholar
[4]
A.R. Bunsell, Tensile fatigue of thermoplastic fibres, Woodhead Publishing Limited, (n.d.).
Google Scholar
[5]
Z. Guoqi, W. Goldsmith, en C.K.H. Dharan, Penetration of laminated Kevlar by projectiles-I Experimental investigation, Int. J. Solids Struct. 29 (4) (1992) 399–420.
DOI: 10.1016/0020-7683(92)90207-a
Google Scholar
[6]
V.M. Rahul S. Sikarwar, Raman Velmurugan, Experimental and analytical study of high velocity impact on Kevlar / Epoxy composite plates, Cent. Eur. J. Eng. 2 (4) (2012) 638–650.
DOI: 10.2478/s13531-012-0029-x
Google Scholar
[7]
B. Zahid en X. Chen, Impact evaluation of Kevlar-based angle-interlock woven textile composite structures, J. Reinf. Plast. Compos. 32(12) (2013) 925–932.
DOI: 10.1177/0731684413480006
Google Scholar
[8]
Etarapada Roy And Debabrata Chakraborty, Delamination in Hybrid FRP Laminates under Low Velocity Impact, J. Reinf. Plast. Compos. 25 (18) (2006) 1939–(1956).
DOI: 10.1177/0731684406069922
Google Scholar
[9]
E. Sevkat et al., A combined experimental and numerical approach to study ballistic impact response of S2-glass fiber/toughened epoxy composite beams, Compos. Sci. Technol. 69 (7–8) (2009) 965–982.
DOI: 10.1016/j.compscitech.2009.01.001
Google Scholar
[10]
R.A. Pasha et al., Effect of Rubber particles on Kevlar Fiber Reinforced Polymer composite against High Velocity Impact, Tech. Journal, Univ. Eng. Technol. Taxila, Pakistan 23 (1) (2018) 34–41.
Google Scholar
[11]
B.A. Gama et al., Aluminum foam integral armor : a new dimension in armor design, Compos. Struct. 52 (2001) 381–395.
DOI: 10.1016/s0263-8223(01)00029-0
Google Scholar
[12]
K. Agarwal, G.N. Mathur, en D.K. Setua, Short Fibre and Particulate-reinforced Rubber Composites, Def. Sci. J. 52 (3) (2002) 337–346.
DOI: 10.14429/dsj.52.2189
Google Scholar
[13]
M.R. Ahmad et al., Performance of Natural Rubber Coated Fabrics under Ballistic Impact, Malaysian Polym. J. 2 (1) (2007) 39–51.
Google Scholar
[14]
A. Tasdemirci, G. Tunusoglu, en M. Güden, The effect of the interlayer on the ballistic performance of ceramic / composite armors : Experimental and numerical study, Int. J. Impact Eng. 44 (2012) 1–9.
DOI: 10.1016/j.ijimpeng.2011.12.005
Google Scholar
[15]
R.S. Sikarwar en R. Velmurugan, Ballistic impact on glass/epoxy composite laminates, Def. Sci. J. 64 (4) (2014) 393–399.
DOI: 10.14429/dsj.64.3882
Google Scholar
[16]
Sangamesh, K.S. Ravishankar, en S.M. Kulkarni, Ballistic Impact Study on Jute-Epoxy and Natural Rubber Sandwich Composites, Mater. Today Proc. 5 (2) (2017) 6916–6923.
DOI: 10.1016/j.matpr.2017.11.353
Google Scholar
[17]
A.A. Ramadhan et al., High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels, Mater. Des. 43 (2013) 307–321.
DOI: 10.1016/j.matdes.2012.06.034
Google Scholar