Additive Manufacturing - A Literature Review

Article Preview

Abstract:

In the present scenario, the industries are looking for creating the model quickly and making the prototype. Additive manufacturing (AM) is a rising technology for a hefty choice of applications. This route has plenty of advantages such as the availability of a wide range of materials, fabrication speed and resolution of the final components. The current paper deals with the review of the recent developments in additive manufacturing methods and their applications. Further, the discussion has been made about the various materials used for additive manufacturing such as ceramic, polymer, composites and biomaterials. The survey denotes that fused deposition modeling has received the widespread attention of the researchers. Finally, some of the gaps in the research are found and reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-83

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Deradjat, T. Minshall, Implementation of rapid manufacturing for mass customization. J. Manuf. Tech. Man. 28 (2017) 95-121.

DOI: 10.1108/jmtm-01-2016-0007

Google Scholar

[2] J. Yuan Lee, Jia An, Chee Kai Chua, Fundamentals and applications of 3D printing for novel materials: a review, J. App. Mat. Today. 7 (2017) 120–133.

Google Scholar

[3] I. Gregory, Peterson, Johanna Jesse Schwartz, Zhang Di, Benjamin Weiss, Production of Materials with Spatially-Controlled Crosslink Density via Vat Photopolymerization, J. ACS. Mat. Inter. (2016) 1-253.

Google Scholar

[4] A. Druschitz, C. Williams, D. Snelling, M. Seals, Additive Manufacturing Supports the Production of Complex Castings, TMS (The Minerals, Metals & Materials Society), (2014) 1257-1287.

DOI: 10.1002/9781118888100.ch7

Google Scholar

[5] J. Yuan Lee, Wen See Tan, Jia An, Chee Kai Chua, Chuyang, The Potential to Enhance Membrane Module Design with 3D Printing Technology, J. Mem. Sci. 15(2015).

Google Scholar

[6] M.D. Monzon, Z. Ortega, A. Martínez, F. Ortega, Standardization in additive manufacturing: activities carried out by international organizations and projects. Int. J. Manu. Technology. (2014), DOI 10.1007/s00170-014-6334-1.

DOI: 10.1007/s00170-014-6334-1

Google Scholar

[7] P. Jacob, B. Moore Christopher, Williams, Fatigue properties of parts printed by Poly Jet material jetting, Rap. Pro. Journal. 21 (2015) 675 – 685.

DOI: 10.1108/rpj-03-2014-0031

Google Scholar

[8] J. Hongyi Yang, Jingying Charlotte Lim, Yuchan Liu, Xiaoying Qi, Yee Ling Yap, Vishwesh Dikshit, Wai Yee Yeong, Jun Wei, Performance evaluation of Pro Jet multi-material jetting 3D printer, J. Vir. Phy. Prototyping. (2016) ISSN: 1745-2759.

DOI: 10.1080/17452759.2016.1242915

Google Scholar

[9] E.L. Doubrovski, E.Y. Tsai, D. Dikovsky, J.M.P. Geraedts, H. Herr, N. Oxman, Voxel-based fabrication through material property mapping: A design method for bitmap printing, Com. Aid. Design. (2014) doi.org/10.1016/j.cad.2014.05.010.

DOI: 10.1016/j.cad.2014.05.010

Google Scholar

[10] Z.H. Liu, D.Q. hang, S.L. Sing, C.K. Chua, Interfacial Characterisation of SLM Parts in Multi-Material Processing: Metallurgical Diffusion between 316L Stainless Steel and C18400 Copper Alloy, J. Mat. Charac. (2014).

DOI: 10.1016/j.matchar.2014.05.001

Google Scholar

[11] Min Lee Jia, Wai Yee Yeong, A preliminary model of a time-pressure dispensing system for bioprinting based on printing and material parameters, J. Virt. Phy. Prototy. (2014).

Google Scholar

[12] P. Brett, Conner, P. Guha, Manogharan, N. Ashley, Martof, M. Lauren, Rodomsky, Making sense of 3-D printing: Creating a map of additive manufacturing products and services, J. Addi. Manuf. (2014) http://dx.doi.org/10.1016/j.addma.2014.08.005.

DOI: 10.1016/j.addma.2014.08.005

Google Scholar

[13] Hadi miyanaji, Shanshan Zhang, Austin Cassell, Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications, J. Mine. Met & Mate. Socie. 68 (2016).

DOI: 10.1007/s11837-015-1771-3

Google Scholar

[14] Danfang Chen, Steffen Heyer, Suphunnika Ibbotson, Konstantinos Salonitis, Direct digital manufacturing: definition, evolution, and sustainability implications, J. Clean. Produc. (2015) 1-11.

DOI: 10.1016/j.jclepro.2015.05.009

Google Scholar

[15] S.M. Gaytan, M.A. Cadena, H. Karim, D. Delfin, Y. Lin, D. Espalin, E. MacDonald, R.B. Wicker, Fabrication of barium titanate by binder jetting additive manufacturing technology, Ceram. Inter. (2015) http://dx.doi.org/10.1016/j.ceramint. 2015.01.108.

DOI: 10.1016/j.ceramint.2015.01.108

Google Scholar

[16] N.A Mohajer, Steffen Heyer, Suphunnika Ibbotson, Konstantinos Salonitis, Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer, J. Build. Envir. 10 (2015), doi.org/10.1016/j.jclepro.2015.05.009.

DOI: 10.1016/j.buildenv.2015.07.013

Google Scholar

[17] N. Mohan, P. Senthil, S. Vinodh, N. Jayanth, A review on composite materials and process parameters optimization for the fused deposition modeling process, Virt. Phys. Proto. (2017).

DOI: 10.1080/17452759.2016.1274490

Google Scholar

[18] M.F. Afrose, S.H. Masood Pio Iovenitti, Mostafa Nikzad, Igor Sbarski, Effects of part build orientations on fatigue behavior of FDM-processed PLA material, Prog. Addict. Manufac. 1 (2016) 21–28.

DOI: 10.1007/s40964-015-0002-3

Google Scholar

[19] K.S. Boparai, R.Singh, H. Singh, Modelling and optimization of extrusion process parameters for the development of Nylon6–Al–Al2O3 alternative FDM filament, Prog. Additi. Manufac. 1(2016) 115–128.

DOI: 10.1007/s40964-016-0011-x

Google Scholar

[20] K. Chockalingam, N. Jawahar, J. Praveen, Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm, Mat. Manufac. Process. (2016).

DOI: 10.1080/10426914.2015.1127949

Google Scholar

[21] S. Dul, L. Fambri, A. Pegoretti, Fused deposition modeling with ABS-graphene nanocomposites. Composites Part A: Appl. Sci. Manufac. 85 (2016) 181–191.

DOI: 10.1016/j.compositesa.2016.03.013

Google Scholar

[22] V. Francis, P.K. Jain, Experimental investigations on fused deposition modeling of polymer-layered silicate nanocomposite, Virt. Phy. Proto. 11 (2016) 109– 121.

DOI: 10.1080/17452759.2016.1172431

Google Scholar

[23] A. Garg, A. Bhattacharya, A. Batish, (2016) On surface finish and dimensional accuracy of FDM parts after cold vapor treatment, Mat. Manufac. Proc. 31 (2016) 522– 529.

DOI: 10.1080/10426914.2015.1070425

Google Scholar

[24] S. Singh, R. Singh, Effect of process parameters on the microhardness of Al–Al2O3 composite prepared using an alternative reinforced pattern in fused deposition modeling assisted investment casting, Robo. Compu. Int. Manufac. 37, (2015) 162–169.

DOI: 10.1016/j.rcim.2015.09.009

Google Scholar

[25] S. Singh, R. Singh, Wear modeling of Al-Al2O3 functionally graded material prepared by FDM assisted investment castings using dimensionless analysis, J. Manufac. Proc. (2015) http://dx.doi.org/10.1016/j.jmapro.2015.01.007.

DOI: 10.1016/j.jmapro.2015.01.007

Google Scholar

[26] R. Singh, J. Singh, S. Singh, Investigation for the dimensional accuracy of AMC prepared by FDM assisted investment casting using nylon-6 waste based reinforced filament, 78 (2016) 253–259.

DOI: 10.1016/j.measurement.2015.10.016

Google Scholar

[27] R. Singh, S. Singh, F. Fraternali, Development of in-house composite wire based feedstock filaments of fused deposition modeling for wear-resistant materials and structures, Comp. Part B: Eng. 98 (2016) 244–249.

DOI: 10.1016/j.compositesb.2016.05.038

Google Scholar

[28] N. Hill, M. Haghi, Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate, Rap. Pro. J. (2014), doi 10.1108/RPJ-04-2013-0039.

DOI: 10.1108/rpj-04-2013-0039

Google Scholar

[29] Reazul Haq, Abdul Haq, M.D. Saidin Wahab, Norul Ilmie Jaimi, A fabrication process of polymer nanocomposite filament for fused deposition modeling. App. Mech. Mat. (2014),.

DOI: 10.4028/www.scientific.net/amm.465-466.8

Google Scholar

[30] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Experimental investigations of process parameters influence on rheological behavior and dynamic mechanical properties of FDM manufactured parts, Mat. Manufac. Prose. 31 (2016) 83– 94.

DOI: 10.1080/10426914.2015.1127955

Google Scholar

[31] Fuda Ning, Weilong Cong, Jingjing Qiu, Junhua Wei, Shiren Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B: Eng. 80 (2015) 369–378.

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[32] Fuda Ning, Weilong Cong, Yingbin Hu, Hui Wang, Additive manufacturing of carbon fiber reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties, J. Comp. Mat. (2016).

DOI: 10.1177/0021998316646169

Google Scholar

[33] R. Singh, S. Singh, Experimental investigations for a statistically controlled solution of FDM assisted Nylon6-Al- Al2O3 replica based investment casting, Mat. Today: Proceedings, vol2 (2015) 76–85.

DOI: 10.1016/j.matpr.2015.07.139

Google Scholar

[34] R.R. Dehoff, S.S. Babu, Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing, J. Act. Mate. 6 (2010) 121-132.

DOI: 10.1016/j.actamat.2010.03.006

Google Scholar

[35] J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, App. Mech. Mat. Manufac. 23 (2003) 357–371.

DOI: 10.1108/01445150310698652

Google Scholar

[36] Swee Leong Sing, Jia An, Wai Yee Yeong, Florencia Edith Wiria, Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review of Processes, Materials, and Designs, J. Ortho. Research, (2015).

DOI: 10.1002/jor.23075

Google Scholar

[37] S. Kumar, J.P. Kruth, Composites by rapid prototyping technology, Mat. Design, 31 (2010) 850–856.

DOI: 10.1016/j.matdes.2009.07.045

Google Scholar

[38] P. Cruz, E.D. Shoemake, P. Adam, J. Leachman, Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen. IOP Pub. 102 (2015) 1–6.

DOI: 10.1088/1757-899x/102/1/012020

Google Scholar

[39] Fuda Ning, Weilong Cong, Jingjing Qiu, Junhua Wei, Shiren Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Comp. Part B: Eng. 80 (2015) 369–378.

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[40] G.U.O. Nannan, C. Ming, Additive manufacturing: technology, applications, and research needs, Front. Mech. Eng. 8 (2013) 215–243.

Google Scholar

[41] N. Brian, Turner, A. Scott A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness: Rap. Proto. J. 21 (2015) 250–261.

DOI: 10.1108/rpj-02-2013-0017

Google Scholar

[42] Jiuchun Yan, Zhiwu Xu, Lei Shi, Xing Ma, Shiqin Yang, Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites. Mat. Desi. 32 (2011) 343–347.

DOI: 10.1016/j.matdes.2010.06.036

Google Scholar

[43] Kamaljit Singh, Boparai Rupinder Singh, Harwinder Singh, Substrate Release Mechanisms for Gas Metal Arc Weld 3D Aluminum Metal Printing, Mat. Manuf. Proce. (2014).

Google Scholar

[44] Nahum Travitzky, Alexander Bonet, Benjamin Dermeik, Tobias Fey, Ina Filbert-Demut, Lorenz Schlier, Tobias Schlordt, Peter Greil, Additive Manufacturing of Ceramic-Based Materials. J. Adv. Eng. Mat. (2014).

DOI: 10.1002/adem.201400097

Google Scholar

[45] Bernd Baufelda, Omer van der Biesta, Rosemary Gaultb, Keith Ridgway, Manufacturing Ti-6Al-4V components by Shaped Metal Deposition: Microstructure and mechanical properties. Mat. Sci. Eng. 20 (2011) 123-136.

DOI: 10.1088/1757-899x/26/1/012001

Google Scholar

[46] H. Garg, R. Singh, Investigations for melt flow index of Nylon6-Fe composite based hybrid FDM filament, Rapid Proto. J. 22 (2016) 338– 343.

DOI: 10.1108/rpj-04-2014-0056

Google Scholar

[47] M. Ahlhelm, P. Günther, U. Scheithauer, E. Schwarzer, A. Günther, T. Slawik, T. Moritz, A. Michaelis Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications, J. Euro. Cera. Soc. 36 (2015) 283–289.

DOI: 10.1016/j.jeurceramsoc.2015.12.020

Google Scholar

[48] Giovanni Postiglione, Gabriele Natale, Gianmarco Griffini, Marinella Levi, Stefano Turri, Conductive 3D microstructures by the direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling, Comp. Part A: Appl. Sci. Manufac. 21 (2015) 110–117.

DOI: 10.1016/j.compositesa.2015.05.014

Google Scholar

[49] B.J. Green, C.A. Guymon, Modification of Mechanical Properties and Resolution of Printed Stereolithographic Objects through RAFT Agent Incorporation, Add. Manufac. (2019) https://doi.org/10.1016/j.addma.2019.02.008.

DOI: 10.1016/j.addma.2019.02.008

Google Scholar

[50] Tsai C-Yu, Cheng C-Wei, Lee A-Chen, Tsai M-Ching, Synchronized Multi-Spot Scanning Strategies for the Laser Powder Bed Fusion Process, Add. Manufac. (2019) https://doi.org/10.1016/j.addma.2019.02.009.

DOI: 10.1016/j.addma.2019.02.009

Google Scholar

[51] Francesco Sillani, Rob G. Kleijnen, Marc Vetterli, Manfred Schmid, Konrad Wegener, Selective Laser Sintering and Multi Jet Fusion: process-induced modification of the raw materials and analyses of parts performance, (2019), https://doi.org/10.1016/j.addma.2019.02.004.

DOI: 10.1016/j.addma.2019.02.004

Google Scholar

[52] M. Prahar, Bhatt, M. Ariyan, Kabir, Max Peralta, A. Hugh, Bruck, K. Satyandra, Gupta, A Robotic Cell for Performing Sheet Lamination-based Additive Manufacturing, (2019) https://doi.org/10.1016/j.addma.2019.02.002.

DOI: 10.1016/j.addma.2019.02.002

Google Scholar

[53] GUO. Nannan, C.LEU Ming, Additive manufacturing: technology, applications and research needs, Front. Mech. Eng. 8 (2013), 215–243.

DOI: 10.1007/s11465-013-0248-8

Google Scholar

[54] Xibing Gong, Ted Anderson, Kevin Chou, Review on powder-based electron beam additive manufacturing technology, Manufacturing Rev. 1 (2014),.

DOI: 10.1051/mfreview/2014001

Google Scholar

[55] Seyed Farid Seyed Shirazi, Samira Gharehkhani, Mehdi Mehrali, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Sci. Technol. Adv. Mater. 16 (2015), 033502, (20pp).

DOI: 10.1088/1468-6996/16/3/033502

Google Scholar

[56] Robert Chang, Jae Nam, Wei Sun, Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication–Based Direct Cell Writing, Tiss.Eng. Part A. 14 (2008).

DOI: 10.1089/ten.a.2007.0004

Google Scholar

[57] D. Hu, H. Mei, R. Kovacevic, Improving solid freeform fabrication by laser-based additive manufacturing, Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manu. (2002) 216:1253.

DOI: 10.1243/095440502760291808

Google Scholar

[58] Robert W. Peiffer, Experimental Station Laboratory, DuPont, Inc., P. O. Box 80257, Route 141, Wilmington, DE 19880-0257.

Google Scholar