Ultrasonication Assisted Fabrication of Aluminum and Magnesium Matrix Nanocomposites - A Review

Article Preview

Abstract:

Recent researches in the domain of casting confirmed that the mechanical properties of aluminum and magnesium based nanocomposites can be appreciably enhanced when ultrasonic cavitation assisted solidification processing is used. Ultrasonic cavitation assisted solidification processing is used for the manufacturing of aluminum and magnesium alloy based metal matrix nanocomposites reinforced with nanoceramic particles. In this solidification processing, formation of clusters have been minimized and the nanoreinforcements were distributed uniformly in aluminum and magnesium matrix nanocomposites. The ultrasonic assisted casting approach will manage the grain dimensions via minimizing agglomeration of nanoparticles in metal matrices. This paper opinions the properties and morphology of aluminum and magnesium based metal matrix nanocomposites fabricated through ultrasonic assisted casting process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-67

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Santanu Sardar, Santanu Kumar Karmakar , Debdulal Das. Ultrasonic Assisted Fabrication of Magnesium Matrix Composites: A Review. 5th International Conference on Materials Processing and Characterization (ICMPC 2016) 2017, 3280–3289.

DOI: 10.1016/j.matpr.2017.02.214

Google Scholar

[2] N. V. Murthy, A. P. Reddy, N. Selvaraj & c. S. P.rao. A review on fabrication of aluminium alloy based metal matrix nano composites through ultrasonic assisted casting. Journal of Metallurgical and Materials Engineering Research. Dec 2015, 1-8.

Google Scholar

[3] M.R. Dehnavi, B. Niroumand, F. Ashrafizadeh, P.K. Rohatgi. Effects of Continuous and Discontinuous Ultrasonic Treatments on Mechanical Properties and Microstructural Characteristics of Cast Al413- SiCnp Nanocomposite . Materials Science & Engineering A.(2014).

DOI: 10.1016/j.msea.2014.08.042

Google Scholar

[4] Santanu Sardar, Santanu Kumar Karmakar, Debdulal Das. Ultrasonic Cavitation Based Processing of Metal Matrix Nanocomposites: An Overview. Advanced Materials Research Vol 1042 (2014) pp.58-64.

DOI: 10.4028/www.scientific.net/amr.1042.58

Google Scholar

[5] Yong Yang, Jie Lan, Xiaochun Li. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A 380 (2004) 378–383.

DOI: 10.1016/j.msea.2004.03.073

Google Scholar

[6] Michael P. De cicco, lih-sheng turng, xiaochun li. Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants Metals & Materials Society and ASM International (2011).

DOI: 10.1007/s11661-011-0607-1

Google Scholar

[7] Yong Yang,Xiaochun Li. Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites. Journal of Manufacturing Science and Engineering June 2007, Vol. 129 / 497.

DOI: 10.1115/1.2714583

Google Scholar

[8] Jie Lan, Yong Yang, Xiaochun Li. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Materials Science and Engineering A 386 (2004) 284–290.

DOI: 10.1016/s0921-5093(04)00936-0

Google Scholar

[9] Xiaochun Li, Yong Yang, Xudong Cheng. Ultrasonic-assisted fabrication of metal matrix nanocomposites. Journal of Materials Science 39 (2004) 3211 – 3212.

DOI: 10.1023/b:jmsc.0000025862.23609.6f

Google Scholar

[10] G. Cao, H. Konishi, X. Li. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Materials Science and Engineering A 486 (2008) 357–362.

DOI: 10.1016/j.msea.2007.09.054

Google Scholar

[11] K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng. Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Materials Science and Engineering A 540 (2012) 123– 129.

DOI: 10.1016/j.msea.2012.01.112

Google Scholar

[12] G.I. Eskin. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry Volume 8, Issue 3, July 2001, Pages 319-325.

DOI: 10.1016/s1350-4177(00)00074-2

Google Scholar

[13] G.I. Eskin, D.G. Eskin. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrasonics Sonochemistry. 10 (2003) 297–301.

DOI: 10.1016/s1350-4177(02)00158-x

Google Scholar

[14] Dinesh Kumar Koli, Geeta Agnihotri and Rajesh Purohit. Influence of Ultrasonic Assisted Stir Casting on Mechanical Properties of Al6061-nano Al2O3 Composites. Materials Today: Proceedings 2 (2015) 3017 – 3026.

DOI: 10.1016/j.matpr.2015.07.286

Google Scholar

[15] Lakshmanan Poovazhagan, K. Kalaichelvan & T. Sornakumar. Processing and Performance Characteristics of Aluminum-Nano Boron Carbide Metal Matrix Nanocomposites. Materials and Manufacturing Processes, 31: 1275–1285, (2016).

DOI: 10.1080/10426914.2015.1026354

Google Scholar

[16] Dr.Govind Nandipati, Dr.Ravindra kommineni, Dr.Nageswara Rao Damera, Dr.Ramanaiah Nallu. Fabrication and Study of the Mechanical Properties of AA2024 Alloy Reinforced with B4C Nano-particles using Ultrasonic cavitation method. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Volume 7, Issue 4 (Jul. - Aug. 2013), PP 01-07.

DOI: 10.9790/1684-0740107

Google Scholar

[17] G. Cao H. Choi H. Konishi S. Kou R. Lakes X. Li. Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J Mater Sci (2008) 43:5521–5526.

DOI: 10.1007/s10853-008-2785-9

Google Scholar

[18] Sachin Vijay Muley, Satya Prakash Singh, Piyush Sinha, P.P. Bhingole, G.P. Chaudhari. Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior. Materials and Design 53 (2014) 475–481.

DOI: 10.1016/j.matdes.2013.07.056

Google Scholar